Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    PROCEEDINGS

    Scale-Inspired Programmable Robotic Structures with Concurrent Shape Morphing and Stiffness Variation

    Tianyu Chen1, Yifan Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011272

    Abstract Biological organisms often possess remarkable multifunctionality through intricate structures, such as the concurrent shape-morphing and stiffness-variation in octopus. Soft robots, which are inspired by natural creatures, usually require the integration of separate modules to achieve these various functions. As a result, the whole structure is cumbersome and the control system is complex, often involving multiple control loops to finish the required task. Here, inspired by the scaly creatures in nature such as pangolins and fish, we develop a robotic structure that can vary stiffness and change shape simultaneously in a highly-integrated compact body. The scale-inspired… More >

  • Open Access

    PROCEEDINGS

    3D-Printable Centimeter-Scale Tensegrity Structures for Soft Robotics

    Jiacheng Ji1, Boyu Zhang1, Hongying Zhang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-3, 2024, DOI:10.32604/icces.2024.012193

    Abstract Tensegrity metamaterial, well-known for its unique synergy between compressed bars and tensile strings, enable a remarkable deformation and distinctive vibration characteristic [1]. These materials are increasingly recognized for their potential to facilitate advanced locomotion in soft robots. Tensegrity metamaterials, primarily constructed manually, have found applications in large-scale sectors like architecture and aerospace engineering [2]. However, their integration into soft robots necessitates scaling down to a centimeter scale, presenting challenges in automatic prototyping and kinematic simulation to guide the design process [3].
    Recent advancements advocate for 3D-printed tensegrity structures to achieve integrated, one-piece systems [3,4]. Yet,… More >

  • Open Access

    PROCEEDINGS

    4D Printing of Polylactic Acid Hinges: A Study on Shape Memory Factors for Generative Design in a Digital Library Framework for Soft Robotics

    Jiazhao Huang1, Xiaoying Qi1, Chu Long Tham1, Hang Li Seet1, Sharon Mui Ling Nai1, David William Rosen1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.012040

    Abstract The emergence of 4D printing introduces stimuli-responsive, shape-changing capabilities through additive manufacturing (AM) and smart materials, has advanced the field of soft robotics. However, there are currently lack of methods or tools that capable of aiding in the generative design of 4D AM structures. The current generative design procedure for 4D AM structures often lacks transferability among various structures due to limited understanding of shape memory material behaviors for soft robotics. To develop such a digital library, investigation of fundamental elements, such as material properties of shape memory materials, geometry parameters of design primitives, and… More >

  • Open Access

    PROCEEDINGS

    FabriCast: Casting Silicone Structures via Direct Ink Writing on Textiles

    J. M. Tan1, A. Chooi2, C. Chen1, A. Castillo Ugalde2, T. Stalin2, T. Calais2, P. Valdivia y Alvarado1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011827

    Abstract In this study two novel forms of textile-assisted direct ink writing (DIW) of room temperature vulcanised (RTV) silicones were explored: Silicone DIW on spandex fabric, and Silicone DIW on dissolvable fabrics. These processes were evaluated by incorporating resulting components into 4 soft robotic devices: impact resistant elbow pads, a soft passive suction cup gripper, and two fiber embedded inflatable tendril-like soft grippers. More >

  • Open Access

    PROCEEDINGS

    Miura-Origami Soft Robots with Proprioceptive and Interactive Sensing via Embedded Optical Sensors

    Shaowu Tang1, Sicong Liu1,*, Jian S Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011746

    Abstract Origami, a traditional and elegant folding technique, provides a solution for the deformation of three-dimensional structures. Inspired by this, origami-based soft actuators and robots exhibit the advantages of portability, high efficiency, and programmability when performing functions such as locomotion, manipulation, and interaction. However, these deformable origami structures bring challenges to sensing methods and technologies, due to hyperelastic deformations of the soft materials. In this work, a sensing approach is proposed to enable origami robots with proprioceptive and interactive sensing capabilities. The 3D-printed Miura-ori chambers of the robot are embedded with infrared optical sensors (a light-emitting… More >

  • Open Access

    ARTICLE

    Actuator Fluid Control Using Fuzzy Feedback for Soft Robotics Activities

    K. Karnavel1,*, G. Shanmugasundaram2, Satish S. Salunkhe3, V. Kamatchi Sundari4, M. Shunmugathammal4, Bal Krishna Saraswat5

    Intelligent Automation & Soft Computing, Vol.32, No.3, pp. 1855-1865, 2022, DOI:10.32604/iasc.2022.023524 - 09 December 2021

    Abstract Soft robotics is a new field that uses actuators that are non-standard and compatible materials. Industrial robotics is high-throughput manufacturing devices that are quick and accurate. They are built on rigid-body mechanisms. The advancement of robotic production now depends on the inclusion of staff in manufacturing processes, allowing for the completion of activities that need cognitive abilities that are now beyond the scope of artificial networks. Hydrostatic pressure is used to achieve high deflections of structures that are based on the elastomeric in Fluid Actuators (FAs). Soft actuators based on the fluid are a popular… More >

  • Open Access

    ARTICLE

    Soft Robotic Glove Controlling Using Brainwave Detection for Continuous Rehabilitation at Home

    Talit Jumphoo1, Monthippa Uthansakul1, Pumin Duangmanee1, Naeem Khan2, Peerapong Uthansakul1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 961-976, 2021, DOI:10.32604/cmc.2020.012433 - 30 October 2020

    Abstract The patients with brain diseases (e.g., Stroke and Amyotrophic Lateral Sclerosis (ALS)) are often affected by the injury of motor cortex, which causes a muscular weakness. For this reason, they require rehabilitation with continuous physiotherapy as these diseases can be eased within the initial stages of the symptoms. So far, the popular control system for robot-assisted rehabilitation devices is only of two types which consist of passive and active devices. However, if there is a control system that can directly detect the motor functions, it will induce neuroplasticity to facilitate early motor recovery. In this… More >

Displaying 1-10 on page 1 of 7. Per Page