Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves

    Mingming Zhao, Jialong Jiao*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1045-1061, 2024, DOI:10.32604/fdmp.2023.043744 - 07 June 2024

    Abstract Predicting the response of liquefied natural gas (LNG) contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process. In this study, the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics (SPH) method. Firstly, the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver. Then, a three-dimensional simplified LNG carrier model, including two prismatic liquid tanks and a wave tank, was introduced. Different More >

  • Open Access

    ARTICLE

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

    Qingyun Zeng1,2, Mingxin Zheng1,*, Dan Huang2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2981-3005, 2023, DOI:10.32604/fdmp.2023.029427 - 27 October 2023

    Abstract A complex interface exists between water flow and solid particles during hydraulic soil erosion. In this study, the particle discrete element method (DEM) has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes. Moreover, the weakly compressible smoothed particle hydrodynamics (WCSPH) approach has been exploited to simulate the instability process of the free surface fluid and its propagation characteristics at the solid–liquid interface. The influence of a suspended medium on the water flow dynamics has been characterized using the mixed viscosity concept accounting for the More > Graphic Abstract

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

  • Open Access

    PROCEEDINGS

    Three-Dimensional Numerical Simulation of Large-Scale LandslideGenerated Surging Waves with a GPU‒Accelerated Soil‒Water Coupled SPH Model

    Can Huang1,*, Xiaoliang Wang1, Qingquan Liu1, Huaning Wang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09824

    Abstract Soil‒water coupling is an important process in landslide-generated impulse waves (LGIW) problems, accompanied by large deformation of soil, strong interface coupling and three-dimensional effect. A meshless particle method, smooth particle hydrodynamics (SPH) has great advantages in dealing with complex interface and multiphase coupling problems. This study presents an improved soil‒water coupled model to simulate LGIW problems based on an open source code DualSPHysics (v4.0). Aiming to solve the low efficiency problem in modeling real large-scale LGIW problems, graphics processing unit (GPU) acceleration technology is implemented into this code. An experimental example, subaerial landslidegenerated water waves,… More >

  • Open Access

    ARTICLE

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

    Binghui Cui1,*, Liaojun Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 357-376, 2023, DOI:10.32604/cmes.2022.022309 - 29 September 2022

    Abstract Flow-type landslide is one type of landslide that generally exhibits characteristics of high flow velocities, long jump distances, and poor predictability. Simulation of its propagation process can provide solutions for risk assessment and mitigation design. The smoothed particle hydrodynamics (SPH) method has been successfully applied to the simulation of two-dimensional (2D) and three-dimensional (3D) flow-like landslides. However, the influence of boundary resistance on the whole process of landslide failure is rarely discussed. In this study, a boundary condition considering friction is proposed and integrated into the SPH method, and its accuracy is verified. Moreover, the… More > Graphic Abstract

    Application of Smoothed Particle Hydrodynamics (SPH) for the Simulation of Flow-Like Landslides on 3D Terrains

  • Open Access

    ARTICLE

    A Simplified Approach of Open Boundary Conditions for the Smoothed Particle Hydrodynamics Method

    Thanh Tien Bui1,*, Yoshihisa Fujita2, Susumu Nakata2

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.2, pp. 425-442, 2021, DOI:10.32604/cmes.2021.016766 - 08 October 2021

    Abstract In this paper, we propose a simplified approach of open boundary conditions for particle-based fluid simulations using the weakly compressible smoothed-particle hydrodynamics (SPH) method. In this scheme, the values of the inflow/outflow particles are calculated as fluid particles or imposed desired values to ensure the appropriate evolution of the flow field instead of using a renormalization process involving the fluid particles. We concentrate on handling the generation of new inflow particles using several simple approaches that contribute to the flow field stability. The advantages of the . -SPH scheme, specifically the particle shifting technique, were… More >

  • Open Access

    ARTICLE

    Simulation of Water-Soil-Structure Interactions Using Incompressible Smoothed Particle Hydrodynamics

    Abdelraheem M. Aly1, 2, *, Mitsuteru Asai3, Ehab Mahmoud Mohamed4, 5

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 205-224, 2020, DOI:10.32604/cmc.2020.09227 - 23 July 2020

    Abstract In the present work, an incompressible smoothed particle hydrodynamic (SPH) method is introduced to simulate water-soil-structure interactions. In the current calculation, the water is modelled as a Newtonian fluid. The soil is modelled in two different cases. In the first case, the granular material is considered as a fluid where a Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress criterion, and the viscosity is derived from the cohesion and friction angle. In addition, the fictitious suspension layers between water and soil depending on the concentration of soil are introduced. In the second case,… More >

  • Open Access

    ARTICLE

    Numerical Study on Rock Breaking Mechanism of Supercritical CO2 Jet Based on Smoothed Particle Hydrodynamics

    Xiaofeng Yang1, *, Yanhong Li1, Aiguo Nie1, Sheng Zhi2, Liyuan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.122, No.3, pp. 1141-1157, 2020, DOI:10.32604/cmes.2020.08538 - 01 March 2020

    Abstract Supercritical carbon dioxide (Sc-CO2) jet rock breaking is a nonlinear impact dynamics problem involving many factors. Considering the complexity of the physical properties of the Sc-CO2 jet and the mesh distortion problem in dealing with large deformation problems using the finite element method, the smoothed particle hydrodynamics (SPH) method is used to simulate and analyze the rock breaking process by Sc-CO2 jet based on the derivation of the jet velocity-density evolution mathematical model. The results indicate that there exisits an optimal rock breaking temperature by Sc-CO2. The volume and length of the rock fracture increase with the… More >

  • Open Access

    ARTICLE

    A Dual-Support Smoothed Particle Hydrodynamics for Weakly Compressible Fluid Inspired By the Dual-Horizon Peridynamics

    Huilong Ren1, Xiaoying Zhuang2,3,*, Timon Rabczuk1

    CMES-Computer Modeling in Engineering & Sciences, Vol.121, No.2, pp. 353-383, 2019, DOI:10.32604/cmes.2019.05146

    Abstract A dual-support smoothed particle hydrodynamics (DS-SPH) that allows variable smoothing lengths while satisfying the conservations of linear momentum, angular momentum and energy is developed. The present DS-SPH is inspired by the dual-support, a concept introduced from dual-horizon peridynamics from the authors and applied here to SPH so that the unbalanced interactions between the particles with different smoothing lengths can be correctly considered and computed. Conventionally, the SPH formulation employs either the influence domain or the support domain. The concept of dual-support identifies that the influence domain and the support domain involves the duality and should More >

  • Open Access

    ARTICLE

    Numerical investigation of penetration in Ceramic/Aluminum targets using Smoothed particle hydrodynamics method and presenting a modified analytical model

    Ehsan Hedayati1, Mohammad Vahedi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.113, No.3, pp. 295-323, 2017, DOI:10.3970/cmes.2017.113.307

    Abstract Radius of ceramic cone can largely contribute into final solution of analytic models of penetration into ceramic/metal targets. In the present research, a modified model based on radius of ceramic cone was presented for ceramic/aluminum targets. In order to investigate and evaluate accuracy of the presented analytic model, obtained results were compared against the results of the Florence’s analytic model and also against numerical modeling results. The phenomenon of impact onto ceramic/aluminum composites were modeled using smoothed particle hydrodynamics (SPH) implemented utilizing ABAQUS Software. Results indicated that, with increasing initial velocity and ceramic thickness and… More >

  • Open Access

    ARTICLE

    Low Velocity Impact Response and Failure Assessment of Textile Reinforced Concrete Slabs

    Subashini I1, a, Smitha Gopinath2, *, Aahrthy R3, b

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 291-306, 2017, DOI:10.3970/cmc.2017.053.291

    Abstract Present paper proposes a methodology by combining finite element method with smoothed particle hydrodynamics to simulate the response of textile reinforced concrete (TRC) slabs under low velocity impact loading. For the constitutive modelling in the finite element method, the concrete damaged plasticity model was employed to the cementitious binder of TRC and Von-Mises criterion was used for the textile reinforcement. Strain dependent smoothed particle hydrodynamics (SPH) was used to assess the damage and failure pattern of TRC slabs. Numerical simulation was carried out on TRC slabs with two different volume fraction of glass textile reinforcement More >

Displaying 1-10 on page 1 of 19. Per Page