Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    PROCEEDINGS

    Investigation on Microscopic Properties of Copper Concentrate Particles by Combining Experiments and DEM Modelling

    Zhenyu Zhu1, Ping Zhou1, Xingbang Wan1, Zhuo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-4, 2024, DOI:10.32604/icces.2024.011777

    Abstract 1 General introduction
    The flash smelting is one of the dominant technologies for copper matte production. To meet the increasing demand, the production capability of flash smelting furnace has been increased several times. However, under current conditions, the segregation of concentrate particles becomes an escalating issue, impacting production efficiency and safety [1]. The DEM modelling is a powerful tool for investigating particle behaviors such as contact and collision, but the lack of accurate microscopic properties of copper concentrate particles makes it challenging to conduct reliable DEM simulations [2]. To address this gap, this study employs both… More >

  • Open Access

    ARTICLE

    Influence of Anthracite-to-Ilmenite-Ratio on Element Distribution in Titanium Slag Smelting in Large DC Furnaces

    Shihong Huang1, Ting Lei2, Yan Cui3, Zhifeng Nie4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 883-896, 2022, DOI:10.32604/fdmp.2022.018537 - 06 April 2022

    Abstract The distribution of titanium, carbon and associated elements (calcium, magnesium, silicon and aluminum) in a smelting process is studied by means of a chemical equilibrium calculation method for multiphase and multicomponent systems, and verified through comparison with production results. In particular, using the coexistence theory for titanium slag structures, the influence of the AIR (anthracite to ilmenite ratio) on the distribution of such elements is analyzed. The results show that the AIR can be adjusted to achieve a selective reduction of oxides in the melt. More >

Displaying 1-10 on page 1 of 2. Per Page