Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Smart Micro Grid Energy System Management Based on Optimum Running Cost for Rural Communities in Rwanda

    Fabien Mukundufite1,*, Jean Marie Vianney Bikorimana1, Alexander Kyaruzi Lugatona2

    Energy Engineering, Vol.121, No.7, pp. 1805-1821, 2024, DOI:10.32604/ee.2024.051398 - 11 June 2024

    Abstract The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024. However, the aforementioned goal is challenged by households that are scattered in remote areas. So far, Solar Home Systems (SHS) have mostly been applied to increase electricity access in rural areas. SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities. The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study. The renewable energy resources available in Remera are the key sources… More >

  • Open Access

    REVIEW

    Technologies Behind the Smart Grid and Internet of Things: A System Survey

    Kuldeep Sharma1, Arun Malik1, Isha Batra1, A. S. M. Sanwar Hosen2, Md Abdul Latif Sarker3, Dong Seog Han4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5049-5072, 2023, DOI:10.32604/cmc.2023.035638 - 29 April 2023

    Abstract Electric smart grids enable a bidirectional flow of electricity and information among power system assets. For proper monitoring and controlling of power quality, reliability, scalability and flexibility, there is a need for an environmentally friendly system that is transparent, sustainable, cost-saving, energy-efficient, agile and secure. This paper provides an overview of the emerging technologies behind smart grids and the internet of things. The dependent variables are identified by analyzing the electricity consumption patterns for optimal utilization and planning preventive maintenance of their legacy assets like power distribution transformers with real-time parameters to ensure an uninterrupted More >

  • Open Access

    ARTICLE

    New Hybrid IoT LoRaWAN/IRC Sensors: SMART Water Metering System

    Vlastimil Slany1, Petr Koudelka1,*, Eva Krcalova1, Jan Jobbagy2, Lukas Danys3, Rene Jaros3, Zdenek Slanina3, Michal Prauzek3, Radek Martinek3

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5201-5217, 2022, DOI:10.32604/cmc.2022.021349 - 14 January 2022

    Abstract The massive development of internet of things (IoT) technologies is gaining momentum across all areas of their possible deployment—spanning from Industry 4.0 to eHealth, smart city, agriculture or waste management. This ongoing development is further pushed forward by the gradual deployment of 5G networks. With 5G capable smart devices, it will be possible to transfer more data with shorter latency thereby resulting in exciting new use cases such as Massive IoT. Massive-IoT (low-power wide area network-LPWAN) enables improved network coverage, long device operational lifetime and a high density of connections. Despite all the advantages of More >

  • Open Access

    ARTICLE

    Energy Demand Forecasting Using Fused Machine Learning Approaches

    Taher M. Ghazal1,2, Sajida Noreen3, Raed A. Said4, Muhammad Adnan Khan5,*, Shahan Yamin Siddiqui3,6, Sagheer Abbas3, Shabib Aftab3, Munir Ahmad3

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 539-553, 2022, DOI:10.32604/iasc.2022.019658 - 03 September 2021

    Abstract The usage of IoT-based smart meter in electric power consumption shows a significant role in helping the users to manage and control their electric power consumption. It produces smooth communication to build equitable electric power distribution for users and improved management of the entire electric system for providers. Machine learning predicting algorithms have been worked to apply the electric efficiency and response of progressive energy creation, transmission, and consumption. In the proposed model, an IoT-based smart meter uses a support vector machine and deep extreme machine learning techniques for professional energy management. A deep extreme More >

  • Open Access

    ARTICLE

    A Novel Knowledge-Based Battery Drain Reducer for Smart Meters

    Isma Farah Siddiqui1, Scott Uk-Jin Lee2,*, Asad Abbas3

    Intelligent Automation & Soft Computing, Vol.26, No.1, pp. 107-119, 2020, DOI:10.31209/2019.100000132

    Abstract The issue of battery drainage in the gigantic smart meters network such as semantic-aware IoT-enabled smart meter has become a serious concern in the smart grid framework. The grid core migrates existing tabular datasets i.e., Relational data to semantic-aware tuples in its Resource Description Framework (RDF) format, for effective integration among multiple components to work aligned with IoT. For this purpose, WWW Consortium (W3C) recommends two specifications as mapping languages. However, both specifications use entire RDB schema to generate data transformation mapping patterns and results large quantity of unnecessary transformation. As a result, smart meters… More >

  • Open Access

    ARTICLE

    An Efficient Supervised Energy Disaggregation Scheme for Power Service in Smart Grid

    Weilie Liu, Jialing He, Meng Li, Rui Jin, Jingjing Hu, Zijian Zhang

    Intelligent Automation & Soft Computing, Vol.25, No.3, pp. 585-593, 2019, DOI:10.31209/2019.100000113

    Abstract Smart energy disaggregation is receiving increasing attention because it can be used to save energy and mine consumer's electricity privacy by decomposing aggregated meter readings. Many smart energy disaggregation schemes have been proposed; however, the accuracy and efficiency of these methods need to be improved. In this work, we consider a supervised energy disaggregation method which initially learns the power consumption of each appliance and then disaggregates meter readings using the previous learning result. In this study, we improved the fast search and find of density peaks clustering algorithm to cluster appliance power signals twice More >

Displaying 1-10 on page 1 of 6. Per Page