Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Requirements and Constraints of Forecasting Algorithms Required in Local Flexibility Markets

    Alex Segura*, Joaquim Meléndez

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 649-672, 2025, DOI:10.32604/cmes.2025.070954 - 30 October 2025

    Abstract The increasing use of renewable energy sources, combined with the increase in electricity demand, has highlighted the importance of energy flexibility management in electrical grids. Energy flexibility is the capacity that generators and consumers have to change production and/or consumption to support grid operation, ensuring the stability and efficiency of the grid. Thus, Local Flexibility Markets (LFMs) are market-oriented mechanisms operated at different time horizons that support flexibility provision and trading at the distribution level, where the Distribution System Operators (DSOs) are the flexibility-demanding actors, and prosumers are the flexibility providers. This paper investigates the… More >

  • Open Access

    ARTICLE

    A Flexible Decision Method for Holonic Smart Grids

    Ihab Taleb, Guillaume Guerard*, Frédéric Fauberteau, Nga Nguyen, Pascal Clain

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 597-619, 2025, DOI:10.32604/cmes.2025.070517 - 30 October 2025

    Abstract Isolated power systems, such as those on islands, face acute challenges in balancing energy demand with limited generation resources, making them particularly vulnerable to disruptions. This paper addresses these challenges by proposing a novel control and simulation framework based on a holonic multi-agent architecture, specifically developed as a digital twin for the Mayotte island grid. The primary contribution is a multi-objective optimization model, driven by a genetic algorithm, designed to enhance grid resilience through intelligent, decentralized decision-making. The efficacy of this architecture is validated through three distinct simulation scenarios: (1) a baseline scenario establishing nominal… More >

  • Open Access

    ARTICLE

    Multi-Expert Collaboration Based Information Graph Learning for Anomaly Diagnosis in Smart Grids

    Zengyao Tian1,2, Li Lv1,*, Wenchen Deng1

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5359-5376, 2025, DOI:10.32604/cmc.2025.069427 - 23 October 2025

    Abstract Accurate and reliable fault diagnosis is critical for secure operation in complex smart power systems. While graph neural networks show promise for this task, existing methods often neglect the long-tailed distribution inherent in real-world grid fault data and fail to provide reliability estimates for their decisions. To address these dual challenges, we propose a novel multi-expert collaboration uncertainty-aware power fault recognition framework with cross-view graph learning. Its core innovations are two synergistic modules: (1) The infographics aggregation module tackles the long-tail problem by learning robust graph-level representations. It employs an information-driven optimization loss within a… More >

  • Open Access

    ARTICLE

    Improved PPO-Based Task Offloading Strategies for Smart Grids

    Qian Wang1, Ya Zhou1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3835-3856, 2025, DOI:10.32604/cmc.2025.065465 - 03 July 2025

    Abstract Edge computing has transformed smart grids by lowering latency, reducing network congestion, and enabling real-time decision-making. Nevertheless, devising an optimal task-offloading strategy remains challenging, as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions. We cast the offloading problem as a Markov Decision Process (MDP) and solve it with Deep Reinforcement Learning (DRL). Specifically, we present a three-tier architecture—end devices, edge nodes, and a cloud server—and enhance Proximal Policy Optimization (PPO) to learn adaptive, energy-aware policies. A Convolutional Neural Network (CNN) extracts high-level features from system states, enabling More >

  • Open Access

    ARTICLE

    Data Aggregation Point Placement and Subnetwork Optimization for Smart Grids

    Tien-Wen Sung1, Wei Li1, Chao-Yang Lee2,*, Yuzhen Chen1, Qingjun Fang1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 407-434, 2025, DOI:10.32604/cmc.2025.061694 - 26 March 2025

    Abstract To transmit customer power data collected by smart meters (SMs) to utility companies, data must first be transmitted to the corresponding data aggregation point (DAP) of the SM. The number of DAPs installed and the installation location greatly impact the whole network. For the traditional DAP placement algorithm, the number of DAPs must be set in advance, but determining the best number of DAPs is difficult, which undoubtedly reduces the overall performance of the network. Moreover, the excessive gap between the loads of different DAPs is also an important factor affecting the quality of the… More >

  • Open Access

    ARTICLE

    AI-Enhanced Secure Data Aggregation for Smart Grids with Privacy Preservation

    Congcong Wang1, Chen Wang2,3,*, Wenying Zheng4,*, Wei Gu5

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 799-816, 2025, DOI:10.32604/cmc.2024.057975 - 03 January 2025

    Abstract As smart grid technology rapidly advances, the vast amount of user data collected by smart meter presents significant challenges in data security and privacy protection. Current research emphasizes data security and user privacy concerns within smart grids. However, existing methods struggle with efficiency and security when processing large-scale data. Balancing efficient data processing with stringent privacy protection during data aggregation in smart grids remains an urgent challenge. This paper proposes an AI-based multi-type data aggregation method designed to enhance aggregation efficiency and security by standardizing and normalizing various data modalities. The approach optimizes data preprocessing, More >

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices

    Yangrong Chen1,2, June Li3,*, Yu Xia3, Ruiwen Zhang3, Lingling Li1,2, Xiaoyu Li1,2, Lin Ge1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2579-2609, 2024, DOI:10.32604/cmc.2024.053230 - 15 August 2024

    Abstract Intelligent electronic devices (IEDs) are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions. In the context of the heightened security challenges within smart grids, IEDs pose significant risks due to inherent hardware and software vulnerabilities, as well as the openness and vulnerability of communication protocols. Smart grid security, distinct from traditional internet security, mainly relies on monitoring network security events at the platform layer, lacking an effective assessment mechanism for IEDs. Hence, we incorporate considerations for both cyber-attacks and physical faults, presenting security assessment indicators and… More > Graphic Abstract

    Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices

  • Open Access

    ARTICLE

    RoGRUT: A Hybrid Deep Learning Model for Detecting Power Trapping in Smart Grids

    Farah Mohammad1,*, Saad Al-Ahmadi2, Jalal Al-Muhtadi1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3175-3192, 2024, DOI:10.32604/cmc.2023.042873 - 15 May 2024

    Abstract Electricity theft is a widespread non-technical issue that has a negative impact on both power grids and electricity users. It hinders the economic growth of utility companies, poses electrical risks, and impacts the high energy costs borne by consumers. The development of smart grids is crucial for the identification of power theft since these systems create enormous amounts of data, including information on client consumption, which may be used to identify electricity theft using machine learning and deep learning techniques. Moreover, there also exist different solutions such as hardware-based solutions to detect electricity theft that… More >

  • Open Access

    ARTICLE

    Sparse Adversarial Learning for FDIA Attack Sample Generation in Distributed Smart Grids

    Fengyong Li1,*, Weicheng Shen1, Zhongqin Bi1, Xiangjing Su2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2095-2115, 2024, DOI:10.32604/cmes.2023.044431 - 29 January 2024

    Abstract False data injection attack (FDIA) is an attack that affects the stability of grid cyber-physical system (GCPS) by evading the detecting mechanism of bad data. Existing FDIA detection methods usually employ complex neural network models to detect FDIA attacks. However, they overlook the fact that FDIA attack samples at public-private network edges are extremely sparse, making it difficult for neural network models to obtain sufficient samples to construct a robust detection model. To address this problem, this paper designs an efficient sample generative adversarial model of FDIA attack in public-private network edge, which can effectively… More >

Displaying 1-10 on page 1 of 23. Per Page