Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Based on Symbolic Execution and Graph Neural Networks

    Haoxin Sun1, Xiao Yu1,*, Jiale Li1, Yitong Xu1, Jie Yu1, Huanhuan Li1, Yuanzhang Li2, Yu-An Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070930 - 09 December 2025

    Abstract Since the advent of smart contracts, security vulnerabilities have remained a persistent challenge, compromsing both the reliability of contract execution and the overall stability of the virtual currency market. Consequently, the academic community has devoted increasing attention to these security risks. However, conventional approaches to vulnerability detection frequently exhibit limited accuracy. To address this limitation, the present study introduces a novel vulnerability detection framework called GNNSE that integrates symbolic execution with graph neural networks (GNNs). The proposed method first constructs semantic graphs to comprehensively capture the control flow and data flow dependencies within smart contracts. More >

  • Open Access

    ARTICLE

    Ponzi Scheme Detection for Smart Contracts Based on Oversampling

    Yafei Liu1,2, Yuling Chen1,2,*, Xuewei Wang3, Yuxiang Yang2, Chaoyue Tan2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069152 - 10 November 2025

    Abstract As blockchain technology rapidly evolves, smart contracts have seen widespread adoption in financial transactions and beyond. However, the growing prevalence of malicious Ponzi scheme contracts presents serious security threats to blockchain ecosystems. Although numerous detection techniques have been proposed, existing methods suffer from significant limitations, such as class imbalance and insufficient modeling of transaction-related semantic features. To address these challenges, this paper proposes an oversampling-based detection framework for Ponzi smart contracts. We enhance the Adaptive Synthetic Sampling (ADASYN) algorithm by incorporating sample proximity to decision boundaries and ensuring realistic sample distributions. This enhancement facilitates the… More >

  • Open Access

    REVIEW

    Computer Modeling Approaches for Blockchain-Driven Supply Chain Intelligence: A Review on Enhancing Transparency, Security, and Efficiency

    Puranam Revanth Kumar1, Gouse Baig Mohammad2, Pallati Narsimhulu3, Dharnisha Narasappa4, Lakshmana Phaneendra Maguluri5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 2779-2818, 2025, DOI:10.32604/cmes.2025.066365 - 30 September 2025

    Abstract Blockchain Technology (BT) has emerged as a transformative solution for improving the efficacy, security, and transparency of supply chain intelligence. Traditional Supply Chain Management (SCM) systems frequently have problems such as data silos, a lack of visibility in real time, fraudulent activities, and inefficiencies in tracking and traceability. Blockchain’s decentralized and irreversible ledger offers a solid foundation for dealing with these issues; it facilitates trust, security, and the sharing of data in real-time among all parties involved. Through an examination of critical technologies, methodology, and applications, this paper delves deeply into computer modeling based-blockchain framework… More >

  • Open Access

    ARTICLE

    Blockchain and Smart Contracts: An Effective Approach for the Transaction Security & Privacy in Electronic Medical Records

    Amal Al-Rasheed1, Hashim Ali2,*, Rahim Khan2,*, Aamir Saeed3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3419-3436, 2025, DOI:10.32604/cmc.2025.065156 - 23 September 2025

    Abstract In the domain of Electronic Medical Records (EMRs), emerging technologies are crucial to addressing longstanding concerns surrounding transaction security and patient privacy. This paper explores the integration of smart contracts and blockchain technology as a robust framework for securing sensitive healthcare data. By leveraging the decentralized and immutable nature of blockchain, the proposed approach ensures transparency, integrity, and traceability of EMR transactions, effectively mitigating risks of unauthorized access and data tampering. Smart contracts further enhance this framework by enabling the automation and enforcement of secure transactions, eliminating reliance on intermediaries and reducing the potential for… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

    Singamaneni Krishnapriya1,2,*, Sukhvinder Singh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1849-1881, 2025, DOI:10.32604/cmes.2025.068326 - 31 August 2025

    Abstract The explosive expansion of the Internet of Things (IoT) systems has increased the imperative to have strong and robust solutions to cyber Security, especially to curtail Distributed Denial of Service (DDoS) attacks, which can cripple critical infrastructure. The proposed framework presented in the current paper is a new hybrid scheme that induces deep learning-based traffic classification and blockchain-enabled mitigation to make intelligent, decentralized, and real-time DDoS countermeasures in an IoT network. The proposed model fuses the extracted deep features with statistical features and trains them by using traditional machine-learning algorithms, which makes them more accurate… More > Graphic Abstract

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

  • Open Access

    ARTICLE

    GMS: A Novel Method for Detecting Reentrancy Vulnerabilities in Smart Contracts

    Dawei Xu1,2, Fan Huang1, Jiaxin Zhang1, Yunfang Liang1, Baokun Zheng3,*, Jian Zhao1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2207-2220, 2025, DOI:10.32604/cmc.2025.061455 - 16 April 2025

    Abstract With the rapid proliferation of Internet of Things (IoT) devices, ensuring their communication security has become increasingly important. Blockchain and smart contract technologies, with their decentralized nature, provide strong security guarantees for IoT. However, at the same time, smart contracts themselves face numerous security challenges, among which reentrancy vulnerabilities are particularly prominent. Existing detection tools for reentrancy vulnerabilities often suffer from high false positive and false negative rates due to their reliance on identifying patterns related to specific transfer functions. To address these limitations, this paper proposes a novel detection method that combines pattern matching… More >

  • Open Access

    ARTICLE

    FADSF: A Data Sharing Model for Intelligent Connected Vehicles Based on Blockchain Technology

    Yan Sun, Caiyun Liu, Jun Li, Yitong Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2351-2362, 2024, DOI:10.32604/cmc.2024.048903 - 15 August 2024

    Abstract With the development of technology, the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal. The data of ICV (intelligent connected vehicles) is the key to organically maximizing their efficiency. However, in the context of increasingly strict global data security supervision and compliance, numerous problems, including complex types of connected vehicle data, poor data collaboration between the IT (information technology) domain and OT (operation technology) domain, different data format standards, lack of shared trust sources, difficulty in ensuring the quality of shared data, lack of data… More >

  • Open Access

    REVIEW

    A Systematic Review and Performance Evaluation of Open-Source Tools for Smart Contract Vulnerability Detection

    Yaqiong He, Jinlin Fan*, Huaiguang Wu

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 995-1032, 2024, DOI:10.32604/cmc.2024.052887 - 18 July 2024

    Abstract With the rise of blockchain technology, the security issues of smart contracts have become increasingly critical. Despite the availability of numerous smart contract vulnerability detection tools, many face challenges such as slow updates, usability issues, and limited installation methods. These challenges hinder the adoption and practicality of these tools. This paper examines smart contract vulnerability detection tools from 2016 to 2023, sourced from the Web of Science (WOS) and Google Scholar. By systematically collecting, screening, and synthesizing relevant research, 38 open-source tools that provide installation methods were selected for further investigation. From a developer’s perspective,… More >

  • Open Access

    ARTICLE

    Preserving Data Secrecy and Integrity for Cloud Storage Using Smart Contracts and Cryptographic Primitives

    Maher Alharby*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2449-2463, 2024, DOI:10.32604/cmc.2024.050425 - 15 May 2024

    Abstract Cloud computing has emerged as a viable alternative to traditional computing infrastructures, offering various benefits. However, the adoption of cloud storage poses significant risks to data secrecy and integrity. This article presents an effective mechanism to preserve the secrecy and integrity of data stored on the public cloud by leveraging blockchain technology, smart contracts, and cryptographic primitives. The proposed approach utilizes a Solidity-based smart contract as an auditor for maintaining and verifying the integrity of outsourced data. To preserve data secrecy, symmetric encryption systems are employed to encrypt user data before outsourcing it. An extensive More >

  • Open Access

    ARTICLE

    Smart Contract Vulnerability Detection Method Based on Feature Graph and Multiple Attention Mechanisms

    Zhenxiang He*, Zhenyu Zhao, Ke Chen, Yanlin Liu

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3023-3045, 2024, DOI:10.32604/cmc.2024.050281 - 15 May 2024

    Abstract The fast-paced development of blockchain technology is evident. Yet, the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem. Conventional smart contract vulnerability detection primarily relies on static analysis tools, which are less efficient and accurate. Although deep learning methods have improved detection efficiency, they are unable to fully utilize the static relationships within contracts. Therefore, we have adopted the advantages of the above two methods, combining feature extraction mode of tools with deep learning techniques. Firstly, we have constructed corresponding feature extraction mode for… More >

Displaying 1-10 on page 1 of 26. Per Page