Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Evaluation of Small Wind Turbine Blades with Uni-Vinyl Foam Alignments Using Static Structural Analysis

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.4, pp. 237-248, 2020, DOI:10.32604/EE.2020.011304 - 31 July 2020

    Abstract Mechanical characteristics of small wind turbine blades of National Advisory Committee for Aeronautics (NACA) 63-415 series with different Univinyl (UV) foam alignments have been evaluated experimentally using Universal Testing Machine and numerically using Finite Element Analysis (FEA) software ANSYS. The wind turbine blade models considered are selected from the NACA 63415 series to give a power output of 1 kW. The blades in this study are made like a sandwich beam structure. The outermost portion of the blade is made of glass fiber reinforced plastics with epoxy resin as composite and Uni-vinyl foam alignments are… More >

  • Open Access

    ARTICLE

    Experimental Study on Modal and Harmonic Analysis of Small Wind Turbine Blades Using NACA 63-415 Aerofoil Cross-Section

    Ajay Veludurthi1, Venkateshwarlu Bolleddu2,*

    Energy Engineering, Vol.117, No.2, pp. 49-61, 2020, DOI:10.32604/EE.2020.010666 - 23 April 2020

    Abstract This work focused on modal and harmonic analysis of small wind turbine blades taken from the NACA 63415 series. The sandwich structure type composite blade is fabricated from GFRP and epoxy with Uni-vinyl hard foams of different alignments as stiffeners. In this work, the modal and harmonic analysis of different varieties of blades like solid, hallow and rectangular alignment blades is carried out by the finite element method using ANSYS 18.1 software. From Finite Element Analysis, the natural frequencies, amplitudes and mode shapes are obtained. Based on the working principle of wind turbine blades, the More >

Displaying 1-10 on page 1 of 2. Per Page