Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data

    Kun Fang, Julong Pan*, Lingyi Li, Ruihan Xiang

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 493-514, 2024, DOI:10.32604/cmc.2023.045008 - 30 January 2024

    Abstract With the widespread use of Internet of Things (IoT) technology in daily life and the considerable safety risks of falls for elderly individuals, research on IoT-based fall detection systems has gained much attention. This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection (Skip-DSCGAN) for fall detection. The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data. A semisupervised learning approach is adopted to train the model using only activities of daily living (ADL) data, which can avoid data imbalance… More >

Displaying 1-10 on page 1 of 1. Per Page