Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    REVIEW

    A Comprehensive Systematic Review: Advancements in Skin Cancer Classification and Segmentation Using the ISIC Dataset

    Madiha Hameed1,3, Aneela Zameer1,*, Muhammad Asif Zahoor Raja2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2131-2164, 2024, DOI:10.32604/cmes.2024.050124 - 08 July 2024

    Abstract The International Skin Imaging Collaboration (ISIC) datasets are pivotal resources for researchers in machine learning for medical image analysis, especially in skin cancer detection. These datasets contain tens of thousands of dermoscopic photographs, each accompanied by gold-standard lesion diagnosis metadata. Annual challenges associated with ISIC datasets have spurred significant advancements, with research papers reporting metrics surpassing those of human experts. Skin cancers are categorized into melanoma and non-melanoma types, with melanoma posing a greater threat due to its rapid potential for metastasis if left untreated. This paper aims to address challenges in skin cancer detection… More >

  • Open Access

    ARTICLE

    Enhancing Skin Cancer Diagnosis with Deep Learning: A Hybrid CNN-RNN Approach

    Syeda Shamaila Zareen1,*, Guangmin Sun1,*, Mahwish Kundi2, Syed Furqan Qadri3, Salman Qadri4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1497-1519, 2024, DOI:10.32604/cmc.2024.047418 - 25 April 2024

    Abstract Skin cancer diagnosis is difficult due to lesion presentation variability. Conventional methods struggle to manually extract features and capture lesions spatial and temporal variations. This study introduces a deep learning-based Convolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which used as the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extraction and temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesion photos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-Term Memory (LSTM) for temporal dependencies, the model More >

  • Open Access

    ARTICLE

    Smart MobiNet: A Deep Learning Approach for Accurate Skin Cancer Diagnosis

    Muhammad Suleman1, Faizan Ullah1, Ghadah Aldehim2,*, Dilawar Shah1, Mohammad Abrar1,3, Asma Irshad4, Sarra Ayouni2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3533-3549, 2023, DOI:10.32604/cmc.2023.042365 - 26 December 2023

    Abstract The early detection of skin cancer, particularly melanoma, presents a substantial risk to human health. This study aims to examine the necessity of implementing efficient early detection systems through the utilization of deep learning techniques. Nevertheless, the existing methods exhibit certain constraints in terms of accessibility, diagnostic precision, data availability, and scalability. To address these obstacles, we put out a lightweight model known as Smart MobiNet, which is derived from MobileNet and incorporates additional distinctive attributes. The model utilizes a multi-scale feature extraction methodology by using various convolutional layers. The ISIC 2019 dataset, sourced from… More >

  • Open Access

    ARTICLE

    Sand Cat Swarm Optimization with Deep Transfer Learning for Skin Cancer Classification

    C. S. S. Anupama1, Saud Yonbawi2, G. Jose Moses3, E. Laxmi Lydia4, Seifedine Kadry5,6,7, Jungeun Kim8,*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2079-2095, 2023, DOI:10.32604/csse.2023.038322 - 28 July 2023

    Abstract Skin cancer is one of the most dangerous cancer. Because of the high melanoma death rate, skin cancer is divided into non-melanoma and melanoma. The dermatologist finds it difficult to identify skin cancer from dermoscopy images of skin lesions. Sometimes, pathology and biopsy examinations are required for cancer diagnosis. Earlier studies have formulated computer-based systems for detecting skin cancer from skin lesion images. With recent advancements in hardware and software technologies, deep learning (DL) has developed as a potential technique for feature learning. Therefore, this study develops a new sand cat swarm optimization with a… More >

Displaying 1-10 on page 1 of 4. Per Page