Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Skew t Distribution-Based Nonlinear Filter with Asymmetric Measurement Noise Using Variational Bayesian Inference

    Chen Xu1, Yawen Mao2, Hongtian Chen3,*, Hongfeng Tao1, Fei Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 349-364, 2022, DOI:10.32604/cmes.2021.019027 - 24 January 2022

    Abstract This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise. Based on the cubature Kalman filter, we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise. The system states and the statistics of skew t noise distribution, including the shape matrix, the scale matrix, and the degree of freedom (DOF) are estimated jointly by employing variational Bayesian (VB) inference. The proposed method is validated in a target tracking example. Results of the simulation indicate that the More >

Displaying 1-10 on page 1 of 1. Per Page