Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Influence of Particle Size Distribution on the Optical Properties of Fine-Dispersed Suspensions

    Dmitrii Kuzmenkov1,*, Pavel Struchalin1,2, Yulia Litvintsova1, Maksim Delov1, Vladimir Skrytnyy1, Kirill Kutsenko1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.1, pp. 1-14, 2022, DOI:10.32604/fdmp.2022.018526 - 10 November 2021

    Abstract

    Nanofluids have great potential for solar energy harvesting due to their suitable optical and thermophysical properties. One of the promising applications of nanofluids is utilization in solar collectors with the direct absorption of light (DASC). The design of a DASC requires detailed knowledge of the optical properties of nanofluids, which can be significantly affected by the particle size distribution. The paper presents the method to take into account the particle size distribution when calculating nanofluid extinction spectra. To validate the proposed model, the particle size distribution and spectral absorbance were measured for aqueous suspension with

    More >

  • Open Access

    ARTICLE

    Pyrolysis of Rice Husk in a Fluidized Bed Reactor: Evaluate the Characteristics of Fractional Bio-Oil and Particulate Emission of Carbonaceous Aerosol (CA)

    Ning Li1,2, Weiming Yi1,2, Zhihe Li1,2,*, Lihong Wang1,2, Yongjun Li1,2, Xueyuan Bai1,2, Mei Jiang1,2

    Journal of Renewable Materials, Vol.8, No.3, pp. 329-346, 2020, DOI:10.32604/jrm.2020.08618 - 01 March 2020

    Abstract Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes. However, the complicated biooil is still a challenge for high-valued application and during biomass pyrolysis, the emission of non-cleaned aerosol, the potential emission, namely carbonaceous aerosol (CA) increased the difficulty of the commercial promotion. In this study, Rice husk pyrolysis was performed in a semi-continuous fluidized bed reactor coupled with fractional condensers. The effects of pyrolysis and condensation temperature on the properties of bio-oil and emission of CA were investigated systemically. Results indicated that the in-situ separation of vapors was… More >

  • Open Access

    ARTICLE

    Modeling Water Adsorption and Retention of Building Materials From Pore Size Distribution

    Abdelkrim Trabelsi1,*, Zakaria Slimani1, Akli Younsi2, Joseph Virgone1, Rafik Belarbi2

    Journal of Renewable Materials, Vol.7, No.6, pp. 547-556, 2019, DOI:10.32604/jrm.2019.04426

    Abstract Water adsorption and capillarity are key phenomena involved during heat and moisture transfer in porous building materials. They account for interaction between solid matrix, liquid water and moist air. They are considered through Water Vapor Adsorption Isotherm (WVAI) and Retention Curve (RC) functions which are constitutive laws characterizing water activity within a porous medium. The objective of this paper is to present a water vapor adsorption and retention models built from multimodal Pore Size Distribution Function (PSDF) and to see how its parameters modify moisture storage for hygroscopic and near saturation ranges. The microstructure of… More >

  • Open Access

    ARTICLE

    Novel Approach for Automatic Region of Interest and Seed Point Detection in CT Images Based on Temporal and Spatial Data

    Zhe Liu1, Charlie Maere1,*, Yuqing Song1

    CMC-Computers, Materials & Continua, Vol.59, No.2, pp. 669-686, 2019, DOI:10.32604/cmc.2019.04590

    Abstract Accurately finding the region of interest is a very vital step for segmenting organs in medical image processing. We propose a novel approach of automatically identifying region of interest in Computed Tomography Image (CT) images based on temporal and spatial data . Our method is a 3 stages approach, 1) We extract organ features from the CT images by adopting the Hounsfield filter. 2)We use these filtered features and introduce our novel approach of selecting observable feature candidates by calculating contours’ area and automatically detect a seed point. 3) We use a novel approach to More >

  • Open Access

    ABSTRACT

    Crystallite Size Distribution Determination By X-Ray Diffraction

    D. Balzar1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.10, No.1, pp. 7-8, 2009, DOI:10.3970/icces.2009.010.007

    Abstract X-ray diffraction is a useful technique for the estimation of size distributions of smaller crystallites. With the constant improvement of experimental techniques, especially with the advent of new-generation synchrotron and neutron sources with superior resolution, these size distributions can be precisely determined. Furthermore, modern methods for the analysis of X-ray diffraction patterns, such as Rietveld refinement, increasingly go beyond the determination of structural parameters and include refinable parameters for a physical crystallite size distribution.

    Several common size distributions (such as lognormal and gamma) will be considered. Particularly, a lognormal distribution of both ellipsoidal and cylindrical crystals More >

  • Open Access

    ABSTRACT

    Kinetics of the ordered phase growth across the phase separation of a multi-component liquid crystalline mixture

    Sergei Bronnikov1, Sergei Kostromin, Vyacheslav Zuev

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.4, pp. 207-214, 2009, DOI:10.3970/icces.2009.009.207

    Abstract Kinetics of the ordered phase growth in a melted multi-component liquid crystalline mixture subjected to a deep cooling was studied using polarizing optical microscopy. The droplets of the ordered phase revealed in the optical images across the phase transition were segmented and treated statistically. In the resulting histograms, two overlapping statistical ensembles related to two main components of the mixture were recognized. These ensembles were successfully described using principles of irreversible thermodynamics and the mean droplet diameters within both ensembles were determined. Analysis of the mean droplet diameter as a function of time allowed recognition More >

  • Open Access

    ARTICLE

    Prediction of Erosion Wear in Multi-Size Particulate Flow through a Rotating Channel

    K.V. Pagalthivarthi1, P.K. Gupta2

    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.1, pp. 93-122, 2009, DOI:10.3970/fdmp.2009.005.093

    Abstract The objective of the present work is to predict erosive wear in multisize dense slurry flow in a rotating channel. The methodology comprises numerical prediction of two-phase flow which is accomplished using the Galerkin finite element method. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. The effect of various operating parameters such as rotation rate, solids concentration, flow rate, particle size distribution and so forth has been studied. Results indicate that wear rate in general increases along the pressure-side of the channel with rotation rate, overall More >

  • Open Access

    ARTICLE

    Scalings for Droplet Sizes in Shear-Driven Breakup: Non-Microfluidic Ways to Monodisperse Emulsions

    V. Cristini1, Y. Renardy2

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.2, pp. 77-94, 2006, DOI:10.3970/fdmp.2006.002.077

    Abstract We review studies of a drop of viscous liquid, suspended in another liquid, and undergoing breakup in an impulsively started shear flow. Stokes flow conditions as well as the effects of inertia are reported. They reveal a universal scaling for the fragments, which allows one to use sheared emulsions to produce monodispersity as an alternative to microfluidic devices. More >

Displaying 1-10 on page 1 of 8. Per Page