Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (173)
  • Open Access

    PROCEEDINGS

    Study on the Flow Dead Zone in the Shell of an Industrial Tubular Fixed Bed Reactor

    Binbin Hao1, Zhenming Liu1,*, Yajun Deng1,*, Dongliang Sun1, Wei Zhang1, Bo Yu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012194

    Abstract The tubular fixed bed reactor is widely used in industrial production because of its strong applicability, high stability and easy maintenance. The flow dead zone in the shell of the reactor will significantly affect the overall performance of the reactor. Reducing the flow dead zone in the shell is the main way to optimize the performance of tubular fixed bed reactor. At present, most of the research on the flow dead zone of the reactor is based on the simplified reactor model, the number and size of tubes are far from the industrial requirements. In… More >

  • Open Access

    ARTICLE

    Path Planning of Multi-Axis Robotic Arm Based on Improved RRT*

    Juanling Liang1, Wenguang Luo1,2,*, Yongxin Qin1

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1009-1027, 2024, DOI:10.32604/cmc.2024.055883 - 15 October 2024

    Abstract An improved RRT* algorithm, referred to as the AGP-RRT* algorithm, is proposed to address the problems of poor directionality, long generated paths, and slow convergence speed in multi-axis robotic arm path planning. First, an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency. Second, a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to… More >

  • Open Access

    PROCEEDINGS

    Static and Dynamic Fracture Toughness of Graphite Materials with Varying Grain Sizes

    Sihui Tong1, Boyuan Cao1, Dongqing Tian2, Qinwei Ma1, Guangyan Liu1,*, Li Shi2, Libin Sun2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.010870

    Abstract Graphite materials serve critical roles as moderators, reflectors and core structural components in high-temperature gas-cooled nuclear reactors. These materials may experience a variety of loads during the reactor operation, including thermal, radiation, fatigue and dynamic loads, potentially leading to crack initiation and propagation. Consequently, it is imperative to investigate the fracture properties of graphite materials. Currently, there exists a dearth of comprehensive studies on the fracture toughness of graphite materials with varying grain sizes, especially regarding dynamic fracture toughness. This study introduces a novel approach utilizing a digital-image-correlation-based virtual extensometer to analyze crack propagation in… More >

  • Open Access

    ARTICLE

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

    Kaiyong Hu1,2,*, Zhaoyi Chen1, Yunqing Hu1, Huan Sun1, Zhili Sun1, Tonghua Zou1,3, Jinghong Ning1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2109-2126, 2024, DOI:10.32604/fdmp.2024.050773 - 23 August 2024

    Abstract The current study focuses on spray cooling applied to the heat exchange components of a cooling tower. An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes. For simplicity, the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics (CFD) software. The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube… More > Graphic Abstract

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

  • Open Access

    ARTICLE

    Application of Stork Optimization Algorithm for Solving Sustainable Lot Size Optimization

    Tareq Hamadneh1, Khalid Kaabneh2, Omar Alssayed3, Gulnara Bektemyssova4,*, Galymzhan Shaikemelev4, Dauren Umutkulov4, Zoubida Benmamoun5, Zeinab Monrazeri6, Mohammad Dehghani6,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2005-2030, 2024, DOI:10.32604/cmc.2024.052401 - 15 August 2024

    Abstract The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Management (SCM), which is characterized by elevated risks due to inadequate accountability and transparency. To address these challenges and improve operations in green manufacturing, optimization algorithms play a crucial role in supporting decision-making processes. In this study, we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms, notably the Stork Optimization Algorithm (SOA). The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature. The theoretical framework of SOA is… More >

  • Open Access

    ARTICLE

    Characteristics of Biopellets Manufactured from Various Lignocellulosic Feedstocks as Alternative Renewable Energy Sources

    Anggara Ridho Putra1, Apri Heri Iswanto1,*, Arif Nuryawan1, Saptadi Darmawan2, Elvara Windra Madyaratri2, Widya Fatriasari2, Lee Seng Hua3, Petar Antov4,*, Harisyah Manurung1, Ade Pera Amydha Sudrajat Herawati Pendi2

    Journal of Renewable Materials, Vol.12, No.6, pp. 1103-1123, 2024, DOI:10.32604/jrm.2024.051077 - 02 August 2024

    Abstract The increased valorization of renewable and cost-effective lignocellulosic feedstocks represents a viable, sustainable, and eco-friendly approach toward the production of biopellets as alternative energy sources. The aim of this research work was to investigate and evaluate the feasibility of using various lignocellulosic raw materials, i.e., raru (Cotylelobium melanoxylon), mangrove (Rhizophora spp.), sengon (Paraserianthes falcataria), kemenyan toba (Styrax sumatrana), oil palm (Elaeis guineensis), manau rattan (Calamus manan), and belangke bamboo (Gigantochloa pruriens) for manufacturing biopellets with different particle sizes. The raw materials used were tested for their moisture content, specific gravity, ash, cellulose, and lignin content. In addition, thermal analyses, i.e., calorific values,… More >

  • Open Access

    ARTICLE

    Reducing the Encrypted Data Size: Healthcare with IoT-Cloud Computing Applications

    Romaissa Kebache1, Abdelkader Laouid1,*, Ahcene Bounceur2, Mostefa Kara1,3, Konstantinos Karampidis4, Giorgos Papadourakis4, Mohammad Hammoudeh2

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1055-1072, 2024, DOI:10.32604/csse.2024.048738 - 17 July 2024

    Abstract Internet cloud services come at a price, especially when they provide top-tier security measures. The cost incurred by cloud utilization is directly proportional to the storage requirements. Companies are always looking to increase profits and reduce costs while preserving the security of their data by encrypting them. One of the offered solutions is to find an efficient encryption method that can store data in a much smaller space than traditional encryption techniques. This article introduces a novel encryption approach centered on consolidating information into a single ciphertext by implementing Multi-Key Embedded Encryption (MKEE). The effectiveness… More >

  • Open Access

    ARTICLE

    Finite Element Analysis for Magneto-Convection Heat Transfer Performance in Vertical Wavy Surface Enclosure: Fin Size Impact

    Md. Fayz-Al-Asad1,4, F. Mebarek-Oudina2,*, H. Vaidya3, Md. Shamim Hasan4, Md. Manirul Alam Sarker4, A. I. Ismail5

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 817-837, 2024, DOI:10.32604/fhmt.2024.050814 - 11 July 2024

    Abstract The goal of this paper is to represent a numerical study of magnetohydrodynamic mixed convection heat transfer in a lid-driven vertical wavy enclosure with a fin attached to the bottom wall. We use a finite element method based on Galerkin weighted residual (GWR) techniques to set up the appropriate governing equations for the present flow model. We have conducted a parametric investigation to examine the impact of Hartmann and Richardson numbers on the flow pattern and heat transmission features inside a wavy cavity. We graphically represent the numerical results, such as isotherms, streamlines, velocity profiles,… More >

  • Open Access

    ARTICLE

    An Investigation into the Performances of Cement Mortar Incorporating Superabsorbent Polymer Synthesized with Kaolin

    Xiao Huang1,2, Jin Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1393-1406, 2024, DOI:10.32604/fdmp.2024.046360 - 27 June 2024

    Abstract Cement-based materials are fundamental in the construction industry, and enhancing their properties is an ongoing challenge. The use of superabsorbent polymers (SAP) has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties. This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers (K-SAP) on the properties of cement mortar. The results show that K-SAP significantly affects the cement mortar’s rheological behavior, with distinct phases of water absorption and release, leading to changes in workability over time. Furthermore, K-SAP alters the hydration More >

  • Open Access

    ARTICLE

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

    Abeer H. Falih*, Basima Salman Khalaf, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 597-613, 2024, DOI:10.32604/fhmt.2024.049812 - 20 May 2024

    Abstract In this study, the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions. To accomplish this, a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software, focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements. The simulations utilized the finite element method to address turbulent flow within the tube by solving partial differential equations, encompassing Re numbers spanning from 3000 to 8000. The study specifically examined single-phase… More > Graphic Abstract

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

Displaying 1-10 on page 1 of 173. Per Page