Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (167)
  • Open Access

    ARTICLE

    Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations

    Jiaqiong Wang1,2, Tao Yang1, Chen Hu1, Yu Zhang3,*, Ling Zhou1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1203-1218, 2024, DOI:10.32604/fdmp.2023.045825

    Abstract To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm, special attention was paid to the first and second stage impeller guide vanes. Moreover, the impeller blade outlet width, impeller inlet diameter, blade inclination angle, and number of blades were considered for orthogonal tests. Accordingly, nine groups of design solutions were formed, and then used as a basis for the execution of numerical simulations (CFD) aimed at obtaining the efficiency values and heads for each design solution group. The More >

  • Open Access

    ARTICLE

    Direct Pointwise Comparison of FE Predictions to StereoDIC Measurements: Developments and Validation Using Double Edge-Notched Tensile Specimen

    Troy Myers1, Michael A. Sutton1,*, Hubert Schreier2, Alistair Tofts2, Sreehari Rajan Kattil1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1263-1298, 2024, DOI:10.32604/cmes.2024.048743

    Abstract To compare finite element analysis (FEA) predictions and stereovision digital image correlation (StereoDIC) strain measurements at the same spatial positions throughout a region of interest, a field comparison procedure is developed. The procedure includes (a) conversion of the finite element data into a triangular mesh, (b) selection of a common coordinate system, (c) determination of the rigid body transformation to place both measurements and FEA data in the same system and (d) interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates. For an aluminum Al-6061 double edge More >

  • Open Access

    ARTICLE

    A Novel Numerical Method for Simulating Boiling Heat Transfer of Nanofluids

    Yang Cao*, Xuhui Meng

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 583-595, 2024, DOI:10.32604/fhmt.2024.049111

    Abstract In this paper, a new approach called the Eulerian species method was proposed for simulating the convective and/or boiling heat transfer of nanofluids. The movement of nanoparticles in nanofluids is tracked by the species transport equation, and the boiling process of nanofluids is computed by the Eulerian multiphase method coupled with the RPI boiling model. The validity of the species transport equation for simulating nanoparticles movement was verified by conducting a simulation of nanofluids convective heat transfer. Simulation results of boiling heat transfer of nanofluids were obtained by using the commercial CFD software ANSYS Fluent More >

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities More >

  • Open Access

    ARTICLE

    Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions

    Jiaqi Wu1, Li Zhuo1,*, Jianliang Pei1, Yao Li2, Hongqiang Xie1, Jiaming Wu1, Huaizhong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 621-645, 2024, DOI:10.32604/cmes.2024.046398

    Abstract The surrounding geological conditions and supporting structures of underground engineering are often updated during construction, and these updates require repeated numerical modeling. To improve the numerical modeling efficiency of underground engineering, a modularized and parametric modeling cloud server is developed by using Python codes. The basic framework of the cloud server is as follows: input the modeling parameters into the web platform, implement Rhino software and FLAC3D software to model and run simulations in the cloud server, and return the simulation results to the web platform. The modeling program can automatically generate instructions that can run… More >

  • Open Access

    ARTICLE

    Mathematical Modelling and Simulations of Active Direct Methanol Fuel Cell

    RABIRANJAN MURMUa,b, DEBASHIS ROYa, HAREKRUSHNA SUTARb

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 125-139, 2023, DOI:10.32381/JPM.2023.40.3-4.1

    Abstract A one dimensional isothermal model is proposed by modelling the kinetics of methanol transport at anode flow channel (AFC), membrane and cathode catalyst layer of direct methanol fuel cell (DMFC). Analytical model is proposed to predict methanol cross-over rate through the electrolyte membrane and cell performance. The model presented in this paper considered methanol diffusion and electrochemical oxidation at the anode and cathode channels. The analytical solution of the proposed model was simulated in a MATLAB environment to obtain the polarization curve and leakage current. The effect of methanol concentration on cell voltage and leakage More >

  • Open Access

    ARTICLE

    BIO-HEAT TRANSFER SIMULATION OF SQUARE AND CIRCULAR ARRAY OF RETINAL LASER IRRADIATION

    Arunn Narasimhan*, Kaushal Kumar Jha

    Frontiers in Heat and Mass Transfer, Vol.2, No.3, pp. 1-8, 2011, DOI:10.5098/hmt.v2.3.3005

    Abstract Pan Retinal photocoagulation (PRP), a retinal laser surgical process, is simulated using a three-dimensional bio-heat transfer numerical model. Spots of two different type of array, square array of 3 × 3 spots and a circular array of six spots surrounding a central spot, are sequentially irradiated. Pennes bio-heat transfer model is used as the governing equation. Finite volume method is applied to find the temperature distribution due to laser irradiation inside the human eye. Each spot is heated for 100 ms and subsequently cooled for 100 ms with an initial laser power of 0.2 W. More >

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3047-3061, 2024, DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature More >

  • Open Access

    ARTICLE

    Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations

    Wei Zhong1, Zhenfang Xin2, Lihua Wang1,*, Haiping Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1427-1453, 2024, DOI:10.32604/cmes.2023.031271

    Abstract Flash boiling atomization (FBA) is a promising approach for enhancing spray atomization, which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure. However, when the outlet speed of the nozzle exceeds 400 m/s, investigating high-speed flash boiling atomization (HFBA) becomes quite challenging. This difficulty arises from the involvement of many complex physical processes and the requirement for a very fine mesh in numerical simulations. In this study, an HFBA model for gasoline direct injection (GDI) is established. This model incorporates primary and secondary atomization,… More >

  • Open Access

    ARTICLE

    Numerical Simulations of the Flow Field around a Cylindrical Lightning Rod

    Wei Guo1, Yanliang Liu1, Xuqiang Wang1, Jiazheng Meng2, Mengqin Hu2, Bo He2,*

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 19-35, 2024, DOI:10.32604/sdhm.2023.042944

    Abstract As an important lightning protection device in substations, lightning rods are susceptible to vibration and potential structural damage under wind loads. In order to understand their vibration mechanism, it is necessary to conduct flow analysis. In this study, numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ω model. The flow patterns in different segments of the lightning rod at the same reference wind speed (wind speed at a height of 10 m) and the flow patterns in the same segment at different reference wind… More >

Displaying 1-10 on page 1 of 167. Per Page