Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Finite Element Simulation Analysis of a Novel 3D-FRSPA for Crawling Locomotion

    Bingzhu Wang1,*, Xiangrui Ye2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1401-1425, 2024, DOI:10.32604/cmes.2024.047364 - 29 January 2024

    Abstract A novel three-dimensional-fiber reinforced soft pneumatic actuator (3D-FRSPA) inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed. It has an omni-directional bending configuration, and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA. In this paper, the static and kinematic analysis of 3D-FRSPA are carried out in detail. The effects of fiber, pneumatic chamber and segment length, and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed, respectively. The soft mobile robot composed of More >

  • Open Access

    ARTICLE

    Construction monitoring and finite element simulation of assembly support for large cantilever cover beam

    Chen Qu1, Han Fang1, Qingxing Feng2

    Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, Vol.39, No.1, pp. 1-7, 2023, DOI:10.23967/j.rimni.2023.01.001 - 12 January 2023

    Abstract The study on the assembly support for the large cantilevered cover beam was carried out by conducting real-time monitoring on the assembly frames’ strain and displacement development processes in the actual project. Modeling of the support and numerical simulation for actual working conditions were presented. The monitoring data and analysis results show that the overall stress ratio of the support was less than 30%. And as the concrete structure being supported hardened, the support frame was unloaded. When the stress ratio was then reduced to less than 10%, it was the most appropriate time to More >

  • Open Access

    ARTICLE

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

    Hongyu Mu1,2,*, Yinyan Wang1, Chuanlei Yang1, Hong Teng2, Xingtian Zhao2, Hongquan Lu2, Dechun Wang2, Shiyang Hao2, Xiaolong Zhang2, Yan Jin2

    Energy Engineering, Vol.120, No.10, pp. 2325-2342, 2023, DOI:10.32604/ee.2023.029360 - 28 September 2023

    Abstract New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles. The new energy engine cooling technology is critical in the design of new energy vehicles. This paper used one-and three-way joint simulation methods to simulate the refrigeration system of new energy vehicles. Firstly, a k-ε turbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics. Then, the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions. This paper proposes More > Graphic Abstract

    Simulation Analysis of New Energy Vehicle Engine Cooling System Based on K-E Turbulent Flow Mathematical Model

  • Open Access

    ARTICLE

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

    Liqing Yan1, Jiang Liu1,2,*, Guangwei Ying3, Ning Zhang4

    Energy Engineering, Vol.120, No.8, pp. 1919-1938, 2023, DOI:10.32604/ee.2023.027546 - 05 June 2023

    Abstract Recovery of waste heat from boiler flue gas is an effective way to improve energy utilization efficiency. Taking a heating station heating project as an example, the existing heating system of this heating station was analyzed for its underutilized flue gas waste heat and low energy utilization rate. Rankine cycle is an effective waste heat recovery method, and a steam boiler organic Rankine cycle (ORC) cogeneration waste heat utilization method is proposed. The system model simulation is constructed and verified. First, a thermodynamic model was constructed in MATLAB and five suitable work gases were selected More > Graphic Abstract

    Simulation Analysis of Flue Gas Waste Heat Utilization Retrofit Based on ORC System

  • Open Access

    ARTICLE

    CFD Analysis of Spiral Flow Fields in Proton Exchange Membrane Fuel Cells

    Jian Yao, Fayi Yan*, Xuejian Pei

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1425-1445, 2023, DOI:10.32604/fdmp.2023.025282 - 30 January 2023

    Abstract Proton exchange membrane fuel cells (PEMFCs) are largely used in various applications because of their pollution-free products and high energy conversion efficiency. In order to improve the related design, in the present work a new spiral flow field with a bypass is proposed. The reaction gas enters the flow field in the central path and diffuses in two directions through the flow channel and the bypass. The bypasses are arranged incrementally. The number of bypasses and the cross-section size of the bypasses are varied parametrically while a single-cell model of the PEMFC is used. The More > Graphic Abstract

    CFD Analysis of Spiral Flow Fields in Proton Exchange Membrane Fuel Cells

  • Open Access

    ARTICLE

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

    Haowei Yao1,3,*, Youxin Li1,3, Kefeng Lv1,3, Dong Wang2,3, Jinguang Zhang4, Zhenyu Zhan2,3, Zhenyu Wang2,3, Huaitao Song1,3, Xiaoge Wei1,3, Hengjie Qin1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 733-747, 2023, DOI:10.32604/cmes.2023.022155 - 05 January 2023

    Abstract To thoroughly study the extinguishing effect of a high-pressure water mist fire extinguishing system when a transformer fire occurs, a 3D experimental model of a transformer is established in this work by employing Fire Dynamics Simulator (FDS) software. More specifically, by setting different parameters, the process of the high-pressure water mist fire extinguishing system with the presence of both diverse ambient temperatures and water mist sprinkler laying conditions is simulated. In addition, the fire extinguishing effect of the employed high-pressure water mist system with the implementation of different strategies is systematically analyzed. The extracted results… More > Graphic Abstract

    Numerical Simulation Analysis of the Transformer Fire Extinguishing Process with a High-Pressure Water Mist System under Different Conditions

  • Open Access

    ARTICLE

    Underconstrained Cable-Driven Parallel Suspension System of Virtual Flight Test Model in Wind Tunnel

    Huisong Wu, Kaichun Zeng, Li Yu, Yan Li, Xiping Kou*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 395-416, 2023, DOI:10.32604/cmes.2022.021650 - 29 September 2022

    Abstract An underconstrained cable-driven parallel robot (CDPR) suspension system was designed for a virtual flight testing (VFT) model. This mechanism includes two identical upper and lower kinematic chains, each of which comprises a cylindrical pair, rotating pair, and cable parallelogram. The model is pulled via two cables at the top and bottom and fixed by a yaw turntable, which can realize free coupling and decoupling with three rotational degrees of freedom of the model. First, the underconstrained CDPR suspension system of the VFT model was designed according to the mechanics theory, the degrees of freedom were… More >

  • Open Access

    ARTICLE

    Simulation Analysis of Stress Field of Walnut Shell Composite Powder in Laser Additive Manufacturing Forming

    Yueqiang Yu1, Tingang Ma1, Suling Wang1,*, Minzheng Jiang1, Yanling Guo2,3, Ting Jiang1,*, Shuaiqi Huang1, Ziming Zheng1, Bo Yan1, Jiyuan Lv1

    Journal of Renewable Materials, Vol.11, No.1, pp. 333-347, 2023, DOI:10.32604/jrm.2022.022296 - 10 August 2022

    Abstract A calculation model of stress field in laser additive manufacturing of walnut shell composite powder (walnut shell/Co-PES powder) was established. The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature. The stress field was simulated by the sequential coupling method, and the experimental results were in good accordance with the simulation results. In addition, the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder. The displacement of laser More > Graphic Abstract

    Simulation Analysis of Stress Field of Walnut Shell Composite Powder in Laser Additive Manufacturing Forming

  • Open Access

    ARTICLE

    Modeling and Simulation Analysis of Solar Thermal Electric Plants Based on Petri Net

    Rong Huang1, Xiaojuan Lu2,*, Zeping Liang2, Pengfei Gao1, Tian Liang1

    Energy Engineering, Vol.119, No.4, pp. 1711-1728, 2022, DOI:10.32604/ee.2022.019128 - 23 May 2022

    Abstract At present, solar thermal power generation is in the demonstration stage, and the large-scale production is affected by many factors. In view of the characteristics of different operating modes of photothermal power generation, it is analyzed that the turbine needs to be started and stopped frequently due to different operating modes, which will lead to the instability of the output energy and the reduction of power generation efficiency. In this paper, the dynamic equation of energy conversion process is established by using the law of conservation of energy and conservation of mass. Combined with the More > Graphic Abstract

    Modeling and Simulation Analysis of Solar Thermal Electric Plants Based on Petri Net

  • Open Access

    ARTICLE

    Simulation Analysis of Ammonia Leakage and Dispersion in a Large-Scale Refrigeration System

    Jianlu Cheng1, Kaiyong Hu1,*, Jiang Shen1, Lu Jia1,2, Rui Niu1, Zhaoxian Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.4, pp. 1049-1066, 2022, DOI:10.32604/fdmp.2022.019007 - 06 April 2022

    Abstract The use of ammonia in large-scale refrigeration systems (such as those used for a stadium) requires adequate ammonia leakage prevention mechanisms are put in place. In the present study, numerical simulations have been conducted to study the dispersion law in the ammonia machinery room of the refrigeration system for the 2022 Beijing Winter Olympics. The wind speed, and release location have been varied to investigate their effects on the dispersion profile. Different positions of the leakage points in the ammonia storage tank have been found to lead to different areas affected accordingly. In general, the More >

Displaying 1-10 on page 1 of 17. Per Page