Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Similarity Analytic Solutions of a 3D-Fractal Nanofluid Uncoupled System Optimized by a Fractal Symmetric Tangent Function

    Rabha W. Ibrahim1,*, Ahmed M. Ajaj2, Nadia M.G. Al-Saidi3, Dumitru Balean4,5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 221-232, 2022, DOI:10.32604/cmes.2022.018348 - 29 November 2021

    Abstract The science of strategy (game theory) is known as the optimal decision-making of autonomous and challenging players in a strategic background. There are different strategies to complete the optimal decision. One of these strategies is the similarity technique. Similarity technique is a generalization of the symmetric strategy, which depends only on the other approaches employed, which can be formulated by altering diversities. One of these methods is the fractal theory. In this investigation, we present a new method studying the similarity analytic solution (SAS) of a 3D-fractal nanofluid system (FNFS). The dynamic evolution is completely… More >

  • Open Access

    ARTICLE

    EFFECTS OF VARIABLE VISCOSITY ON HEAT AND MASS TRANSFER BY MHD MIXED CONVECTION FLOW ALONG A VERTICAL CYLINDER EMBEDDED IN A NON-DARCY POROUS MEDIUM

    Saddam Atteyia Mohammad*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-10, 2020, DOI:10.5098/hmt.14.7

    Abstract An analysis was performed to study the effects of variable viscosity on steady, laminar, hydromagnetic simultaneous heat and mass transfer by mixed convection flow along a vertical cylinder embedded in a non-Darcy porous medium. The analysis was performed for the case of power-law variations of both the surface temperature and concentration. The viscosity of the fluid is assumed to be an inverse linear function of temperature. Certain transformations were employed to transform the governing differential equations to non-similar form. The transformed equations were solved numerically by finite difference method. The entire regime of mixed convection… More >

  • Open Access

    ARTICLE

    Thermal Analysis of MHD Non-Newtonian Nanofluids over a Porous Media

    Asad Ejaz1, Imran Abbas1, Yasir Nawaz1, Muhammad Shoaib Arif1, Wasfi Shatanawi2,3,4,*, Javeria Nawaz Abbasi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.3, pp. 1119-1134, 2020, DOI:10.32604/cmes.2020.012091 - 15 December 2020

    Abstract In the present research, Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction. The PDEs are converted into ordinary differential equations (ODEs) using the similarity method. The obtained ordinary differential equations are solved numerically using shooting method along with RK-4. Part of the present study uses nanoparticles (NPs) like TiO2 and Al2O3 and sodium carboxymethyl cellulose (CMC/water) is considered as a base fluid (BF). This study is conducted to find the influence of nanoparticles, Prandtl number, and magnetic field on velocity More >

  • Open Access

    ARTICLE

    NEW SIMILARITY SOLUTION OF MICROPOLAR FLUID FLOW PROBLEM OVER AN UHSPR IN THE PRESENCE OF QUARTIC KIND OF AUTOCATALYTIC CHEMICAL REACTION

    O. K. Koriko, I. L. Animasaun*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.26

    Abstract The motion of air (i.e fluid) in which tiny particle rotates past a pointed surface of a rocket (as in space science), over a bonnet of a car and past a pointed surface of an aircraft is of important to experts in all these fields. Geometrically, all the domains of fluid flow in all these cases can be referred to as the upper horizontal surface of a paraboloid of revolution (uhspr). Meanwhile, the solution of the corresponding partial differential equation is an open question due to unavailability of suitable similarity variable to non-dimensionalize the angular momentum… More >

  • Open Access

    ARTICLE

    MHD Effect on Relative Motion of Two Immiscible Liquid Spheres

    D.V. Jayalakshmamma1, Dinesh P.A.2, M. Sankar3, D.V. Ch,rashekhar4

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 343-357, 2014, DOI:10.3970/fdmp.2014.010.343

    Abstract We examine the motion of the two concentric immiscible liquid spheres with different viscosities in an electrically conducting fluid in the presence of transverse magnetic field. The inner sphere is assumed to move at a constant velocity. The Stoke’s equation along with the Lorentz force is considered to model the resulting fluid flow, analytical solutions being obtained by the similarity solution method in terms of modified Bessel’s functions. Streamlines related to the fluid circulation in the annulus between the two liquid spheres and inside the inner liquid sphere are presented for different combinations of the More >

Displaying 1-10 on page 1 of 5. Per Page