Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Tailored Phosphate Glass Powders for Augmented Flame Retardancy and Ceramicization in Silicone Rubber

    Yanbei Hou1,2, Xu Chang1, Shuming Liu1, Huimin Zhang3, Jianwei Fu3, Jianbin Wu3, Zhiyong Li3, Guoqiang Tang3, Weizhao Hu1,*

    Journal of Polymer Materials, Vol.42, No.2, pp. 531-548, 2025, DOI:10.32604/jpm.2025.065040 - 14 July 2025

    Abstract Silicone rubber (SR) exhibits superior breathability and high-temperature resistance. However, SR is prone to degradation under extreme heat or combustion, limiting its effectiveness in mitigating secondary hazards. In this study, phosphate glass powder was used to calcinate zinc borate, lanthanum oxide, and cerium oxide. Methylphenyl polysiloxane was then grafted onto the surface of the glass powder, resulting in the modified powders designated as Methylphenyl polysiloxane-grafted zinc borate-modified phosphate glass powder (GF-ZnBM), Methylphenyl polysiloxane-grafted lanthanum oxide-modified phosphate glass powder (GF-LaM), and Methylphenyl polysiloxane-grafted cerium oxide-modified phosphate glass powder (GF-CeM). The modified powders were subsequently incorporated into… More > Graphic Abstract

    Tailored Phosphate Glass Powders for Augmented Flame Retardancy and Ceramicization in Silicone Rubber

  • Open Access

    ARTICLE

    Improvement of Surface Electrical Properties of Silicone Rubber Based on Fluorination

    Hanbo Zheng, Yue Peng, Enpeng Qin, Yi Li*

    Journal of Polymer Materials, Vol.42, No.2, pp. 549-568, 2025, DOI:10.32604/jpm.2025.064866 - 14 July 2025

    Abstract Fluorination is a critical surface modification technique for enhancing the electrical performance of composite insulators. This study employs molecular simulations to examine the microstructure and space charge behavior of fluorinated and non-fluorinated silicone rubber under an electric field, with experimental validation. The results show that fluorinated silicone rubber exhibits lower total energy, higher polarization, and stronger dipole moments compared to its non-fluorinated counterpart, shifting the material from an insulating to a conductive state. Under lower electric field strengths, the carbon-silicon bonds in fluorinated silicone rubber are longer, but it maintains geometric stability under higher fields.… More > Graphic Abstract

    Improvement of Surface Electrical Properties of Silicone Rubber Based on Fluorination

  • Open Access

    ARTICLE

    Aging Characteristics and Influencing Factors of the Sheds of Composite Insulators in Karst Regions of China

    Wei Zhao1, Miao Jiang2, Jun Dong1, Lee Li2,*

    Energy Engineering, Vol.118, No.6, pp. 1755-1766, 2021, DOI:10.32604/EE.2021.015467 - 10 September 2021

    Abstract In recent years, more and more high-voltage overhead transmission lines were built passing through the karst regions in southwestern China. This type of special landform seems to have an adverse effect on the aging of the sheds of the line suspension composite insulators, which may lead to unexpected flashover and line tripping. In order to find out the particularity of the aging characteristics of insulators operating in the karst regions, samples in operation were selected from both the karst regions and the flatlands. Hydrophobicity, amount of surface contamination, and contaminant composition of the sheds were… More >

  • Open Access

    ARTICLE

    Nanotitanium Dioxide Reinforced High Performance PEI/Silicone Rubber Composites: Mechanical, Thermal and Morphological Characteristics

    R.M. MISHRAA, R. VIJAYVARGIYAA, K.N. PANDEYA, J.S.P. RAIB

    Journal of Polymer Materials, Vol.37, No.3-4, pp. 179-188, 2020, DOI:10.32381/JPM.2020.37.3-4.5

    Abstract The present investigation is targeted to prepare nanocomposites based on binary blends of polyetherimide (PEI)-silicone rubber incorporated with varied loadings of nanotitanium dioxide particles. Nanocomposites have been prepared by melt blending process using twin screw extruder. Thermal properties of the developed nanocomposites have been investigated with the help of thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). Scanning electron microscopy (SEM) is used to analyze the morphological properties of the nanocomposites. Mechanical properties (tensile strength, tensile modulus, elongation at break, impact strength) of the nanocomposites have been evaluated by universal testing machine (UTM). Mechanical testing… More >

  • Open Access

    ARTICLE

    Investigate the Effect of the Magnetic Field on the Mechanical Properties of Silicone Rubber-Based Anisotropic Magnetorheological Elastomer during Curing Process

    Tao Li1,2, Ali Abd El-Aty1,2,4, Cheng Cheng1,2, Yizhou Shen1,2, Cong Wu1,2, Qiucheng Yang1,2, Shenghan Hu1,2, Yong Xu3, Jie Tao1,2,*, Xunzhong Guo1,2,*

    Journal of Renewable Materials, Vol.8, No.11, pp. 1411-1427, 2020, DOI:10.32604/jrm.2020.012939 - 28 September 2020

    Abstract In this investigation, a new silicone rubber-based MRE material was prepared to be used as a forming medium in manufacturing thin-walled complex- shaped Ni-based tubes through the bulging process. Thus, it is significant to investigate the effect of magnetic field intensity, magnetic field loading time, and angle on the mechanical properties of the prepared MRE material during the curing process. The obtained results showed that increasing the magnetic field intensity during the curing process can improve the orientation of the chain structure in the elastomer matrix effectively. However, its mechanical properties are the best… More >

Displaying 1-10 on page 1 of 5. Per Page