Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Attention-Enhanced CNN-GRU Method for Short-Term Power Load Forecasting

    Zheng Yin, Zhao Zhang*

    Journal on Artificial Intelligence, Vol.7, pp. 633-645, 2025, DOI:10.32604/jai.2025.074450 - 24 December 2025

    Abstract Power load forecasting load forecasting is a core task in power system scheduling, operation, and planning. To enhance forecasting performance, this paper proposes a dual-input deep learning model that integrates Convolutional Neural Networks, Gated Recurrent Units, and a self-attention mechanism. Based on standardized data cleaning and normalization, the method performs convolutional feature extraction and recurrent modeling on load and meteorological time series separately. The self-attention mechanism is then applied to assign weights to key time steps, after which the two feature streams are flattened and concatenated. Finally, a fully connected layer is used to generate More >

  • Open Access

    ARTICLE

    Short-Term Power Load Forecasting with Hybrid TPA-BiLSTM Prediction Model Based on CSSA

    Jiahao Wen, Zhijian Wang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 749-765, 2023, DOI:10.32604/cmes.2023.023865 - 05 January 2023

    Abstract Since the existing prediction methods have encountered difficulties in processing the multiple influencing factors in short-term power load forecasting, we propose a bidirectional long short-term memory (BiLSTM) neural network model based on the temporal pattern attention (TPA) mechanism. Firstly, based on the grey relational analysis, datasets similar to forecast day are obtained. Secondly, the bidirectional LSTM layer models the data of the historical load, temperature, humidity, and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network, so that the influencing factors (with different characteristics) can select relevant… More >

Displaying 1-10 on page 1 of 2. Per Page