Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    Investigating Periodic Dependencies to Improve Short-Term Load Forecasting

    Jialin Yu1,*, Xiaodi Zhang2, Qi Zhong1, Jian Feng1

    Energy Engineering, Vol.121, No.3, pp. 789-806, 2024, DOI:10.32604/ee.2023.043299 - 27 February 2024

    Abstract With a further increase in energy flexibility for customers, short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids. The electrical load series exhibit periodic patterns and share high associations with metrological data. However, current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series, which hinders the further improvement of short-term load forecasting accuracy. Therefore, this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction. In addition, More >

  • Open Access

    ARTICLE

    Research on Short-Term Load Forecasting of Distribution Stations Based on the Clustering Improvement Fuzzy Time Series Algorithm

    Jipeng Gu1, Weijie Zhang1, Youbing Zhang1,*, Binjie Wang1, Wei Lou2, Mingkang Ye3, Linhai Wang3, Tao Liu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2221-2236, 2023, DOI:10.32604/cmes.2023.025396 - 09 March 2023

    Abstract An improved fuzzy time series algorithm based on clustering is designed in this paper. The algorithm is successfully applied to short-term load forecasting in the distribution stations. Firstly, the K-means clustering method is used to cluster the data, and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division. On this basis, the data is fuzzed to form a fuzzy time series. Secondly, a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load, which is used to predict the short-term trend More >

  • Open Access

    ARTICLE

    A Novel Ultra Short-Term Load Forecasting Method for Regional Electric Vehicle Charging Load Using Charging Pile Usage Degree

    Jinrui Tang*, Ganheng Ge, Jianchao Liu, Honghui Yang

    Energy Engineering, Vol.120, No.5, pp. 1107-1132, 2023, DOI:10.32604/ee.2023.025666 - 20 February 2023

    Abstract Electric vehicle (EV) charging load is greatly affected by many traffic factors, such as road congestion. Accurate ultra short-term load forecasting (STLF) results for regional EV charging load are important to the scheduling plan of regional charging load, which can be derived to realize the optimal vehicle to grid benefit. In this paper, a regional-level EV ultra STLF method is proposed and discussed. The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles, and then constructed by our collected EV charging transaction data in the… More >

  • Open Access

    ARTICLE

    A Levenberg–Marquardt Based Neural Network for Short-Term Load Forecasting

    Saqib Ali1,2, Shazia Riaz2,3, Safoora2, Xiangyong Liu1, Guojun Wang1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1783-1800, 2023, DOI:10.32604/cmc.2023.035736 - 06 February 2023

    Abstract Short-term load forecasting (STLF) is part and parcel of the efficient working of power grid stations. Accurate forecasts help to detect the fault and enhance grid reliability for organizing sufficient energy transactions. STLF ranges from an hour ahead prediction to a day ahead prediction. Various electric load forecasting methods have been used in literature for electricity generation planning to meet future load demand. A perfect balance regarding generation and utilization is still lacking to avoid extra generation and misusage of electric load. Therefore, this paper utilizes Levenberg–Marquardt (LM) based Artificial Neural Network (ANN) technique to… More >

  • Open Access

    ARTICLE

    Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model

    Yunlei Zhang1, Ruifeng Cao1, Danhuang Dong2, Sha Peng3,*, Ruoyun Du3, Xiaomin Xu3

    Energy Engineering, Vol.119, No.5, pp. 1829-1841, 2022, DOI:10.32604/ee.2022.020118 - 21 July 2022

    Abstract In the electricity market, fluctuations in real-time prices are unstable, and changes in short-term load are determined by many factors. By studying the timing of charging and discharging, as well as the economic benefits of energy storage in the process of participating in the power market, this paper takes energy storage scheduling as merely one factor affecting short-term power load, which affects short-term load time series along with time-of-use price, holidays, and temperature. A deep learning network is used to predict the short-term load, a convolutional neural network (CNN) is used to extract the features, More >

Displaying 1-10 on page 1 of 6. Per Page