Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Attention-Based and Time Series Models for Short-Term Forecasting of COVID-19 Spread

    Jurgita Markevičiūtė1,*, Jolita Bernatavičienė2, Rūta Levulienė1, Viktor Medvedev2, Povilas Treigys2, Julius Venskus2

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 695-714, 2022, DOI:10.32604/cmc.2022.018735 - 07 September 2021

    Abstract The growing number of COVID-19 cases puts pressure on healthcare services and public institutions worldwide. The pandemic has brought much uncertainty to the global economy and the situation in general. Forecasting methods and modeling techniques are important tools for governments to manage critical situations caused by pandemics, which have negative impact on public health. The main purpose of this study is to obtain short-term forecasts of disease epidemiology that could be useful for policymakers and public institutions to make necessary short-term decisions. To evaluate the effectiveness of the proposed attention-based method combining certain data mining… More >

  • Open Access

    ARTICLE

    Nonlinear Time Series Analysis of Pathogenesis of COVID-19 Pandemic Spread in Saudi Arabia

    Sunil Kumar Sharma1, Shivam Bhardwaj2,*, Rashmi Bhardwaj3, Majed Alowaidi1

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 805-825, 2021, DOI:10.32604/cmc.2020.011937 - 30 October 2020

    Abstract This article discusses short–term forecasting of the novel Corona Virus (COVID-19) data for infected and recovered cases using the ARIMA method for Saudi Arabia. The COVID-19 data was obtained from the Worldometer and MOH (Ministry of Health, Saudi Arabia). The data was analyzed for the period from March 2, 2020 (the first case reported) to June 15, 2020. Using ARIMA (2, 1, 0), we obtained the short forecast up to July 02, 2020. Several statistical parameters were tested for the goodness of fit to evaluate the forecasting methods. The results show that ARIMA (2, 1, More >

  • Open Access

    ARTICLE

    Short-term Forecasting of Air Passengers Based on the Hybrid Rough Set and the Double Exponential Smoothing Model

    Haresh Kumar Sharma, Kriti Kumari, Samarjit Kar

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 1-14, 2019, DOI:10.31209/2018.100000036

    Abstract This article focuses on the use of the rough set theory in modeling of time series forecasting. In this paper, we have used the double exponential smoothing (DES) model for forecasting. The classical DES model has been improved by using the rough set technique. The improved double exponential smoothing (IDES) method can be used for the time series data without any statistical assumptions. The proposed method is applied on tourism demand of the air transportation passenger data set in Australia and the results are compared with the classical DES model. It has been observed that More >

Displaying 1-10 on page 1 of 3. Per Page