Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    PROCEEDINGS

    Effect of Slender Bar Structures on the Boundary on Cavitation Bubble Dynamics Due to Self-Focusing Shockwaves

    Jiajun Cui1, Fabian Reuter2, Zhigang Zuo1,*, Shuhong Liu1,*, Claus-Dieter Ohl2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012155

    Abstract When cavitation bubbles collapse near a boundary, they can cause severe cavitation erosion to the boundary, which is a dangerous threat to the rapidly rotating turbines. Prior research has established that for single bubbles a possible mechanism is energy focusing of shockwaves during the non-spherical collapse of cavitation bubbles [1]. This however needs a particularly symmetric environment. A possible approach to reduce the shockwave focusing and thus the erosion would be through suitable modification of the boundary. In a first approach to modify this phenomenon, we introduce the symmetry breaking structure on the boundary in the shape of a slender bar to explore the effect More >

  • Open Access

    PROCEEDINGS

    On the Shock-Wave Self-Focusing Dynamics of a Single Collapsing Bubble: A Numerical Study

    Wentao Wu1, Qingyun Zeng1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.012089

    Abstract The collapses of bubbles near rigid walls are seen widely in engineering and medical applications, examples are surface cleaning, sonoporation, under water explosion, and cavitation erosions, to name a few. Recent experimental studies demonstrated that only bubbles with extremely small stand-off distance γ (γ = d/Rmax, γ is stand-off distance, d is the initial distance of the bubble center to the boundary, and Rmax is the maximum radius the bubble would attain) generate severe erosions during the first oscillating circle. This erosion phenomenon, attributed to a self-focusing mechanism, lacks a comprehensive explanation. Here we provided… More >

  • Open Access

    PROCEEDINGS

    Multi-phase Modeling on Spall and Recompression Process of Tin Under Double Shockwaves

    Fengchao Wu1,*, Xuhai Li1, Yi Sun1, Yuanchao Gan1, Huayun Geng1, Yuying Yu1, Jianbo Hu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09320

    Abstract The dynamical response of materials to multiple shock waves is a critical issue in shock physics and engineering applications. In this work, hydrodynamic simulations are used to investigate the shock-induced spall failure and subsequent recompression characteristics of tin, under the implementation of a multiphase equation of state, multi-phase constitutive relations, and a damage model. As within experiments, double shock loadings in simulations are driven by layered impactors with different shock impedances. In general, our numerical calculations agree well with recent tin spall experiments and reproduce the free surface velocity characteristics. Interesting dynamic behaviors such as… More >

  • Open Access

    ARTICLE

    FLOW CHARACTERISTICS OF WET NATURAL GAS IN DIFFERENT THROTTLING DEVICES

    Xuewen Caoa,b,*, Qi Chua,b, Xiaodan Songa,b, Yuxuan Lia,b, Jiang Biana,b

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-9, 2019, DOI:10.5098/hmt.13.2

    Abstract Wet natural gas widely exists in the natural gas industry, and the selection of throttling devices plays an important role in wet natural gas transportation. In order to study the flow field characteristics of different throttling devices in wet natural gas pipelines, a set of Laval nozzles, orifice plates, and plate valves have been designed. The standard k-ε model was selected for numerical simulation. By changing inlet pressure, inlet temperature or volume fraction of water-liquid, the pressure field and temperature fields of different throttling devices were obtained, and the influence of the presence of a More >

Displaying 1-10 on page 1 of 4. Per Page