Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    PROCEEDINGS

    Simulation of Underwater Explosion Shock Wave Propagation in Heterogeneous Fluid Field

    Yuntao Lei1, Wenbin Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011365

    Abstract The underwater explosion could cause the serious damage to the naval ships. Investigating the underwater explosion problem is crucial for the development of marine military power. During the recent years, the underwater explosion dynamics in the homogeneous fluid field has been investigated by lots of researchers. However, there often exist sound speed thermoclines in the real ocean environment, which leads to a more complex fluid environment than the homogeneous fluid. The corresponding numerical calculations become more complicated. In order to fully understand the underwater explosion dynamics in the real ocean environment, we perform the numerical… More >

  • Open Access

    PROCEEDINGS

    Far-Field Underwater Explosion Shock Wave Propagation Simulation Using the Three Dimensional Discontinuous Galerkin Method

    Zhaoxu Lian1,Wenbin Wu2,*, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.011054

    Abstract The underwater explosion (UNDEX) could cause the fatal damage of naval ships and submarines in the naval battle, and seriously threaten their combat capability [1]. The UNDEX process is very complicated, including the propagation and reflection of the shock wave, formation and collapse of cavitation zone, trainset dynamic structural response and so on [2]. In this paper, we develop the three-dimensional Discontinuous Galerkin method (DGM) model for simulating the propagation of incident shock loading in fluid domain. The pressure cutoff model is employed to deal with the cavitation effect due to the reflection of the More >

  • Open Access

    ARTICLE

    Bifurcation Analysis and Bounded Optical Soliton Solutions of the Biswas-Arshed Model

    Fahad Sameer Alshammari1, Md Fazlul Hoque2, Harun-Or-Roshid2, Muhammad Nadeem3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2197-2217, 2023, DOI:10.32604/cmes.2023.022301 - 23 November 2022

    Abstract We investigate the bounded travelling wave solutions of the Biswas-Arshed model (BAM) including the low group velocity dispersion and excluding the self-phase modulation. We integrate the nonlinear structure of the model to obtain bounded optical solitons which pass through the optical fibers in the non-Kerr media. The bifurcation technique of the dynamical system is used to achieve the parameter bifurcation sets and split the parameter space into various areas which correspond to different phase portraits. All bounded optical solitons and bounded periodic wave solutions are identified and derived conforming to each region of these phase More >

  • Open Access

    ARTICLE

    Synergetic effects of shock waves with polydeoxyribonucleotides on rotator cuff tendon tear in a rabbit model

    DONG HAN KIM1, DONG RAK KWON1,*, GI-YOUNG PARK1, YONG SUK MOON2

    BIOCELL, Vol.45, No.3, pp. 527-536, 2021, DOI:10.32604/biocell.2021.014350 - 03 March 2021

    Abstract This work aimed to investigate the synergetic therapeutic effects of polydeoxyribonucleotides (PDRN) combined with extracorporeal shock waves therapy (ESWT) and the effects of the therapy according to ESWT sequences on a chronic traumatic full-thickness rotator cuff tear (RCT) in rabbit models. For this purpose, thirty-two rabbits were randomly allocated into 4 groups. An excision was made to create a 5-mm sized full-thickness RCT right proximal to the insertion site on the supraspinatus. After 6 weeks, 4 different procedures (normal saline, Group 1; PDRN injection, Group 2; PDRN injection before ESWT, Group 3; PDRN injection after… More >

  • Open Access

    ARTICLE

    Shock-Wave/Rail-Fasteners Interaction for Two Rocket Sleds in the Supersonic Flow Regime

    Bin Wang1, Jing Zheng1, Yuanyuan Yu1,2, Runmin Lv1, Changyue Xu1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.4, pp. 675-684, 2020, DOI:10.32604/fdmp.2020.09681 - 11 August 2020

    Abstract Rocket sleds belong to a category of large-scale test platforms running on the ground. The applications can be found in many fields, such as aerospace engineering, conventional weapons, and civil high-tech products. In the present work, shock-wave/rail-fasteners interaction is investigated numerically when the rocket sled is in supersonic flow conditions. Two typical rocket sled models are considered, i.e., an anti-D shaped version of the rocket sled and an axisymmetric slender-body variant. The dynamics for Mach number 2 have been simulated in the framework of a dynamic mesh method. The emerging shock waves can be categorized More >

  • Open Access

    ARTICLE

    Aerodynamic Design of a Subsonic Evacuated Tube Train System

    Tian Li1, *, Xiaohan Zhang1, Yao Jiang2, Weihua Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 121-130, 2020, DOI:10.32604/fdmp.2020.07976 - 01 February 2020

    Abstract The so-called Evacuated Tube Train (ETT) is currently being proposed as a high-speed transportation system potentially competitive with airplane transportation. Aerodynamic resistance is one of the most crucial factors for the successful design of an ETT. In the present work, a three-dimensional concept ETT model has been elaborated. The aerodynamic characteristics of the subsonic ETT have been numerically simulated under different conditions. The train’s running speed varies from 600 km/h up to 1200 km/h, and the blockage ratio is in the range between 0.1 and 0.3. As the blocking ratio and running speed increase, the More >

  • Open Access

    ARTICLE

    Centrifuge Model Tests and Numerical Simulations of the Impact of Underwater Explosion on an Air-Backed Steel Plate

    Zhijie Huang1,2,3, Zuyu Chen1,2,3, Xiaodan Ren4,*, Jing Hu3, Xuedong Zhang3, Lu Hai4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 139-155, 2019, DOI:10.31614/cmes.2019.04596

    Abstract Damage and threats to hydraulic and submarine structures by underwater explosions (UNDEXs) have raised much attention. The centrifuge model test, compared to prototype test, is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously. This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate. Nineteen methodical centrifuge tests of UNDEXs were conducted. The shock wave pressure, bubble oscillation pressure, acceleration and the strain of the air-backed steel More >

  • Open Access

    PEDIATRIC UROLOGY

    Contemporary practice patterns in the treatment of pediatric stone disease

    Rachel B. Davis, Nicholas J. Farber, Amy Kaplan, Rutveej Patel, Robert E. Steckler, Sammy E. Elsamra

    Canadian Journal of Urology, Vol.25, No.4, pp. 9427-9432, 2018

    Abstract Introduction: To compare endourology versus pediatric urology exposure to pediatric stone cases during fellowship, comfortability in treating pediatric stone cases, and access to pediatric surgical equipment.
    Materials and methods: A survey was distributed to all pediatric urology fellowship programs and the Endourological Society. Age was stratified into < 12 months old, 12 months - 4 years, 5 - 12 years, and 13 - 18 years. Exposure and comfortability performing extracorporeal shock wave lithotripsy (SWL), ureteroscopy (URS), and percutaneous nephrolithotomy (PCNL) were assessed across age groups. Exposure was assessed as “yes/no” and comfortability was scaled from 1-5 (“would… More >

  • Open Access

    ARTICLE

    Numerical Shock Viscosity for Impact Analysis Using ALE Formulation

    Souli Mhamed1, Paul Du Bois2, Essam Al-Bahkali3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.117, No.1, pp. 91-107, 2018, DOI:10.31614/cmes.2018.03888

    Abstract When the simulation takes account of dissipative mechanisms, e.g. heat conduction and viscosity, the shocks become smeared out to produce thin layers of rapidly and continuously varying energy, density, pressure and velocity rather than discrete surfaces of mathematical discontinuity. In the mid twentieth century, Von Neumann and Richtmyer suggested the use of a viscous pressure term (bulk viscosity) in the equilibrium equations for ideal gases in order to examine the shock while avoiding numerical oscillations at the shock front. When the bulk viscosity is included in the conservation equations, the comprehensive physics present a continuous… More >

  • Open Access

    HOW I DO IT

    The prone ureteroscopic technique for managing large stone burdens

    Kevan M. Sternberg1, Bruce L. Jacobs2, Benjamin J. King1, Jared B. Wachterman1, Khaled Shahrour2, Katherine M. Theisen2, Sarah E. Sprauer2, Erin Ohmann2, Timothy D. Averch2

    Canadian Journal of Urology, Vol.22, No.2, pp. 7758-7762, 2015

    Abstract Percutaneous nephrolithotomy (PCNL) is the standard treatment for patients with large stone burdens, but can be associated with significant complications. Flexible ureteroscopy is an alternative approach that is less invasive, but often requires multiple procedures. Typically, many factors play a role in the decision to perform PCNL or ureteroscopy. The challenge is that it is difficult to predict which stone burdens will be able to be cleared ureteroscopically. We describe our approach using initial prone ureteroscopy with the transition to standard prone PCNL if required. More >

Displaying 1-10 on page 1 of 28. Per Page