Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Comparative Thermal Performance in SiO2–H2O and (MoS2–SiO2)–H2O Over a Curved Stretching Semi-Infinite Region: A Numerical Investigation

    Basharat Ullah1, Umar Khan1, Hafiz Abdul Wahab1, Ilyas Khan2,*, Dumitru Baleanu3,4,5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 947-960, 2021, DOI:10.32604/cmc.2020.012430 - 30 October 2020

    Abstract The investigation of Thermal performance in nanofluids and hybrid nanofluids over a curved stretching infinite region strengthens its roots in engineering and industry. Therefore, the comparative thermal analysis in SiO2–H2O and (MoS2–SiO2)–H2O is conducted over curved stretching surface. The model is reduced in the dimensional version via similarity transformation and then treated numerically. The velocity and thermal behavior for both the fluids is decorated against the preeminent parameters. From the analysis, it is examined that the motion of under consideration fluids declines against Fr and λ. The thermal performance enhances for higher volumetric fraction and λ. More >

  • Open Access

    ARTICLE

    A Displacement Solution to Transverse Shear Loading of Composite Beams by BEM

    E.J. Sapountzakis1, V.G. Mokos2

    CMC-Computers, Materials & Continua, Vol.10, No.1, pp. 1-40, 2009, DOI:10.3970/cmc.2009.010.001

    Abstract In this paper the boundary element method is employed to develop a displacement solution for the general transverse shear loading problem of composite beams of arbitrary constant cross section. The composite beam (thin or thick walled) consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the… More >

  • Open Access

    ARTICLE

    Shear Deformation Effect in Second-Order Analysis of Composite Frames Subjected in Variable Axial Loading by BEM

    E.J. Sapountzakis1, V.G. Mokos1

    Structural Durability & Health Monitoring, Vol.2, No.4, pp. 207-224, 2006, DOI:10.3970/sdhm.2006.002.207

    Abstract In this paper a boundary element method is developed for the second-order analysis of frames consisting of composite beams of arbitrary constant cross section, taking into account shear deformation effect. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. Each beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this… More >

Displaying 1-10 on page 1 of 3. Per Page