Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (199)
  • Open Access

    ARTICLE

    Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region

    Huayi Zhang1, Maobin Song2, Lei Shen1,*, Nizar Faisal Alkayem1, Maosen Cao3

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 55-75, 2025, DOI:10.32604/sdhm.2024.052869 - 15 November 2024

    Abstract The concrete panel of earth-rock dams in cold regions tends to crack due to the combination effect of non-uniform foundation settlement, ice expansion loads, and freeze-thaw damage. In this work, simulations are designed to investigate the effects of freeze-thaw damage degrees on the fracture behavior caused by the partial detachment and ice expansion loads on concrete panels. Results show that the range of detached panels and freeze-thaw damage degree are the dominant factors that affect the overall load-bearing capacity of the panel and the failure cracking modes, whereas the panel slope is a secondary factor. More >

  • Open Access

    ARTICLE

    Shear Deformation of DLC Based on Molecular Dynamics Simulation and Machine Learning

    Chaofan Yao, Huanhuan Cao, Zhanyuan Xu*, Lichun Bai*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2107-2119, 2024, DOI:10.32604/cmes.2024.055743 - 31 October 2024

    Abstract Shear deformation mechanisms of diamond-like carbon (DLC) are commonly unclear since its thickness of several micrometers limits the detailed analysis of its microstructural evolution and mechanical performance, which further influences the improvement of the friction and wear performance of DLC. This study aims to investigate this issue utilizing molecular dynamics simulation and machine learning (ML) techniques. It is indicated that the changes in the mechanical properties of DLC are mainly due to the expansion and reduction of sp3 networks, causing the stick-slip patterns in shear force. In addition, cluster analysis showed that the sp2-sp3 transitions arise… More >

  • Open Access

    PROCEEDINGS

    Tension, Shear and Bending Properties of Two-Dimensional Materials

    Hongfei Ye1,*, Dong Li1,2, Hongwu Zhang1, Yonggang Zheng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010938

    Abstract Due to excellent physical performance and potential application in the nanoscale fluid channel, 2D transition-metal dioxides and dichalcogenides with 1H phase are of great interest. Their mechanical property attracts much attention but the accurate evaluation still faces challenges because of the ultrasoft and ultrathin structure. In this work, we establish an analytical atom-based molecular mechanics model to predict the elastic modulus, Poisson’s ratio and shear modulus of the single-layer 2D transition-metal dioxides and dichalcogenides. The proposed method is validated through the calculation of the mechanical property of Molybdenum disulfide (MoS2). The results indicate that the elastic… More >

  • Open Access

    ARTICLE

    Experimental and Three-Dimensional Numerical Simulation of Phenomena Induced by Submerged Oblique Jet Scouring

    Hao Chen1,2, Xianbin Teng2,*, Faxin Zhu1,*, Zhibin Zhang2, Jie Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1799-1821, 2024, DOI:10.32604/fdmp.2024.049731 - 06 August 2024

    Abstract Scouring experiments were conducted using a three-dimensional laser scanning technology for angles of the jet spanning the interval from 0° to 30°, and the characteristics of the scour hole in equilibrium conditions were investigated accordingly. The results indicate that the optimal scouring effects occur when the jet angle is in the ranges between 15° and 20°. Moreover, the dimensionless profiles of the scour hole exhibit a high degree of similarity at different jet angles. Numerical simulations conducted using the Flow-3D software to investigate the bed shear stress along the jet impingement surface have shown that More >

  • Open Access

    ARTICLE

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

    Elena Mosheva1,*, Ivan Krasnyakov2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1743-1758, 2024, DOI:10.32604/fdmp.2024.049146 - 06 August 2024

    Abstract Continuous-flow microchannels are widely employed for synthesizing various materials, including nanoparticles, polymers, and metal-organic frameworks (MOFs), to name a few. Microsystem technology allows precise control over reaction parameters, resulting in purer, more uniform, and structurally stable products due to more effective mass transfer manipulation. However, continuous-flow synthesis processes may be accompanied by the emergence of spatial convective structures initiating convective flows. On the one hand, convection can accelerate reactions by intensifying mass transfer. On the other hand, it may lead to non-uniformity in the final product or defects, especially in MOF microcrystal synthesis. The ability… More > Graphic Abstract

    Applying the Shearlet-Based Complexity Measure for Analyzing Mass Transfer in Continuous-Flow Microchannels

  • Open Access

    ARTICLE

    Constitutive Behavior of the Interface between UHPC and Steel Plate without Shear Connector: From Experimental to Numerical Study

    Zihan Wang1, Boshan Zhang2, Hui Wang1,*, Qing Ai1, Xingchun Huang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1863-1888, 2024, DOI:10.32604/cmes.2024.048217 - 20 May 2024

    Abstract The application of ultra-high performance concrete (UHPC) as a covering layer for steel bridge decks has gained widespread popularity. By employing a connection without a shear connector between the steel plate and UHPC, namely, the sandblasted interface and the epoxy adhesive with sprinkled basalt aggregate interface, the installation cannot only be simplified but also the stress concentration resulting from the welded shear connectors can be eliminated. This study develops constitutive models for these two interfaces without shear connectors, based on the interfacial pull-off and push-out tests. For validation, three-point bending tests on the steel-UHPC composite More >

  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Caiping Huang*, Zihan Huang, Wenfeng You

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850 - 15 May 2024

    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL… More >

  • Open Access

    ARTICLE

    Shear Let Transform Residual Learning Approach for Single-Image Super-Resolution

    Israa Ismail1,*, Ghada Eltaweel1, Mohamed Meselhy Eltoukhy1,2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3193-3209, 2024, DOI:10.32604/cmc.2023.043873 - 15 May 2024

    Abstract Super-resolution techniques are employed to enhance image resolution by reconstructing high-resolution images from one or more low-resolution inputs. Super-resolution is of paramount importance in the context of remote sensing, satellite, aerial, security and surveillance imaging. Super-resolution remote sensing imagery is essential for surveillance and security purposes, enabling authorities to monitor remote or sensitive areas with greater clarity. This study introduces a single-image super-resolution approach for remote sensing images, utilizing deep shearlet residual learning in the shearlet transform domain, and incorporating the Enhanced Deep Super-Resolution network (EDSR). Unlike conventional approaches that estimate residuals between high and… More >

  • Open Access

    ARTICLE

    Finite Element Simulations of the Localized Failure and Fracture Propagation in Cohesive Materials with Friction

    Chengbao Hu1,2,3, Shilin Gong4,*, Bin Chen1,2,3, Zhongling Zong4, Xingwang Bao5, Xiaojian Ru5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 997-1015, 2024, DOI:10.32604/cmes.2024.048640 - 16 April 2024

    Abstract Strain localization frequently occurs in cohesive materials with friction (e.g., composites, soils, rocks) and is widely recognized as a fundamental cause of progressive structural failure. Nonetheless, achieving high-fidelity simulation for this issue, particularly concerning strong discontinuities and tension-compression-shear behaviors within localized zones, remains significantly constrained. In response, this study introduces an integrated algorithm within the finite element framework, merging a coupled cohesive zone model (CZM) with the nonlinear augmented finite element method (N-AFEM). The coupled CZM comprehensively describes tension-compression and compression-shear failure behaviors in cohesive, frictional materials, while the N-AFEM allows nonlinear coupled intra-element discontinuities More >

  • Open Access

    REVIEW

    Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy considerations?

    FREDERICK H. SILVER1,2,*, TANMAY DESHMUKH2

    BIOCELL, Vol.48, No.4, pp. 525-540, 2024, DOI:10.32604/biocell.2024.047965 - 09 April 2024

    Abstract All tissues in the body are subjected externally to gravity and internally by collagen fibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis. Mechanotransduction involves mechanical work (force through a distance) and energy storage as kinetic and potential energy. This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components. It involves the application of energy directly to cells through integrin-mediated processes, cell-cell connections, stretching of the cell cytoplasm, and activation of the cell nucleus via yes-associated protein (YAP) and transcriptional coactivator with PDZ-motif… More >

Displaying 1-10 on page 1 of 199. Per Page