Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Defocus Blur Segmentation Using Genetic Programming and Adaptive Threshold

    Muhammad Tariq Mahmood*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4867-4882, 2022, DOI:10.32604/cmc.2022.019544 - 11 October 2021

    Abstract Detection and classification of the blurred and the non-blurred regions in images is a challenging task due to the limited available information about blur type, scenarios and level of blurriness. In this paper, we propose an effective method for blur detection and segmentation based on transfer learning concept. The proposed method consists of two separate steps. In the first step, genetic programming (GP) model is developed that quantify the amount of blur for each pixel in the image. The GP model method uses the multi-resolution features of the image and it provides an improved blur More >

Displaying 1-10 on page 1 of 1. Per Page