Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (334)
  • Open Access

    REVIEW

    Hypersonic Flow over V-Shaped Leading Edges: A Review of Shock Interactions and Aerodynamic Loads

    Xinyue Dong1, Wei Zhao1, Jingying Wang1,2,*, Shiyue Zhang1, Yue Zhou3, Xinglian Yang1, Chunhian Lee1,3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.076238 - 06 February 2026

    Abstract For hypersonic air-breathing vehicles, the V-shaped leading edges (VSLEs) of supersonic combustion ramjet (scramjet) inlets experience complex shock interactions and intense aerodynamic loads. This paper provides a comprehensive review of flow characteristics at the crotch of VSLEs, with particular focus on the transition of shock interaction types and the variation of wall heat flux under different freestream Mach numbers and geometric configurations. The mechanisms governing shock transition, unsteady oscillations, hysteresis, and three-dimensional effects in VSLE flows are first examined. Subsequently, thermal protection strategies aimed at mitigating extreme heating loads are reviewed, emphasizing their relevance to More >

  • Open Access

    ARTICLE

    Gaussian Process Regression-Based Optimization of Fan-Shaped Film Cooling Holes on Concave Walls

    Yanzhao Yang1, Xiaowen Song2, Zhiying Deng2,*, Jianyang Yu3

    FDMP-Fluid Dynamics & Materials Processing, Vol.22, No.1, 2026, DOI:10.32604/fdmp.2026.074345 - 06 February 2026

    Abstract In this study, a Gaussian Process Regression (GPR) surrogate model coupled with a Bayesian optimization algorithm was employed for the single-objective design optimization of fan-shaped film cooling holes on a concave wall. Fan-shaped holes, commonly used in gas turbines and aerospace applications, flare toward the exit to form a protective cooling film over hot surfaces, enhancing thermal protection compared to cylindrical holes. An initial hole configuration was used to improve adiabatic cooling efficiency. Design variables included the hole injection angle, forward expansion angle, lateral expansion angle, and aperture ratio, while the objective function was the More >

  • Open Access

    REVIEW

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

    Hussain H. Al-Kayiem1,*, Safaa M. Ali2, Sundus S. Al-Azawiey3, Raed A. Jessam3

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073303 - 27 January 2026

    Abstract Gas Turbines are among the most important energy systems for aviation and thermal-based power generation. The performance of gas turbine intakes with S-shaped diffusers is vulnerable to flow separation, reversal flow, and pressure distortion, mainly in aggressive S-shaped diffusers. Several methods, including vortex generators and energy promoters, have been proposed and investigated both experimentally and numerically. This paper compiles a review of experimental investigations that have been performed and reported to mitigate flow separation and restore system performance. The operational principles, classifications, design geometries, and performance parameters of S-shaped diffusers are presented to facilitate the… More > Graphic Abstract

    A Comparative Review of the Experimental Mitigation Methods of the S-Shaped Diffusers in the Aeroengine Intakes

  • Open Access

    ARTICLE

    VMFD: Virtual Meetings Fatigue Detector Using Eye Polygon Area and Dlib Shape Indicator

    Hafsa Sidaq1, Lei Wang1, Sghaier Guizani2,*, Hussain Haider3, Ateeq Ur Rehman4,*, Habib Hamam5,6,7

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071254 - 12 January 2026

    Abstract Numerous sectors, such as education, the IT sector, and corporate organizations, transitioned to virtual meetings after the COVID-19 crisis. Organizations now seek to assess participants’ fatigue levels in online meetings to remain competitive. Instructors cannot effectively monitor every individual in a virtual environment, which raises significant concerns about participant fatigue. Our proposed system monitors fatigue, identifying attentive and drowsy individuals throughout the online session. We leverage Dlib’s pre-trained facial landmark detector and focus on the eye landmarks only, offering a more detailed analysis for predicting eye opening and closing of the eyes, rather than focusing… More >

  • Open Access

    PROCEEDINGS

    Enhancing Functional Stability of NiTi Tube for Elastocaloric Cooling Through Overstress Training

    Qiuhong Wang1, Hao Yin1,*, Qingping Sun1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012656

    Abstract Tubular NiTi is a promising candidate of eco-friendly solid-state refrigerant for elastocaloric cooling, but the severe functional degradation of NiTi material during cyclic phase transition (PT) is a key concern in the technology development. Here, plastic deformation of 6.7% is applied on the NiTi tube by overstress training under 1900 MPa for five cycles to improve the cyclic PT stability without losing cooling efficiency. It is found that after 106 compressive cycles under an applied stress of 1000 MPa, the overstress-trained NiTi tube exhibits small residual strain (0.5%), stable adiabatic temperatures drop (T=11K) and improved… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part II—Non-Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3091-3122, 2025, DOI:10.32604/fdmp.2025.070082 - 31 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have emerged as a focal point of research due to their remarkable potential for structural vibration mitigation. Yet, progress in this field remains constrained by an incomplete understanding of the fundamental mechanisms governing sloshing-induced loads in liquid-filled containers. Aqueducts present a distinctive case, as the capacity of their contained water to function effectively as a TLD remains uncertain. To address this gap, the present study investigates the generation mechanisms of sloshing loads under non-resonant cases through a two-dimensional (2D) computational fluid dynamics (CFD) model developed in ANSYS Fluent.… More >

  • Open Access

    ARTICLE

    Study on Flame Shape and Induced Wind Velocity in Inclined Tunnel Fires with One Portal Sealed

    Shengzhong Zhao1, Daiyan Chen1, Han Zhang1,2,*, Junhao Yu1, Lin Xu1, Zhaoyi Zhuang1, Fei Wang1,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1907-1932, 2025, DOI:10.32604/fhmt.2025.071910 - 31 December 2025

    Abstract A sealed portal could significantly alter the flame shape and smoke flow characteristics in inclined tunnel fires. In inclined tunnels, two typical sealing conditions could be defined, namely the upper portal sealed and the lower portal sealed. In this study, the effects of tunnel slope on flame shape, flame length, along with smoke mass flow rate and induced velocity at the tunnel portal, are numerically investigated. The results show that, in all scenarios, flames initially rise vertically but tilt toward the sealed portal during the quasi-steady stage, with the largest tilt angle observed in tunnels… More >

  • Open Access

    ARTICLE

    Who I am shapes how I learn: A mixed methods study exploring the role of work identity and psychological needs in learning engagement

    Ling Li1,#, Ninghui Xu1,#, Wenjing Wang2,*, Jianfen Ying1,*

    Journal of Psychology in Africa, Vol.35, No.6, pp. 833-842, 2025, DOI:10.32604/jpa.2025.071557 - 30 December 2025

    Abstract This study explores the role of teachers’ professional identity (TPI) on employee learning engagement (LE), with mediation by basic needs satisfaction (BNS). Participants were 255 Chinese pre-service teachers (191 females = 74.9%, 16 freshmen = 6.2%, 135 sophomores = 52.9%, 35 juniors = 12.5%, 72 seniors = 28.2%). They completed surveys on the “QuestionStar” online survey platform and 12 of the teachers completed interviews for sharing their personal insights. The results of Structural Equation Modeling (SEM) indicated that teachers’ professional identity significantly predicted both learning engagement and basic needs satisfaction, with basic needs satisfaction partially More >

  • Open Access

    ARTICLE

    Numerical Investigation of Load Generation in U-Shaped Aqueducts under Lateral Excitation: Part I—First-Order Resonant Sloshing

    Yang Dou1, Hao Qin1, Yuzhi Zhang1,2, Ning Wang1, Haiqing Liu3,4, Wanli Yang1,2,4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2673-2700, 2025, DOI:10.32604/fdmp.2025.069719 - 01 December 2025

    Abstract In recent years, tuned liquid dampers (TLDs) have attracted significant research interest; however, overall progress has been limited due to insufficient understanding of the mechanisms governing sloshing-induced loads. In particular, it remains unclear whether the water in aqueducts—common water-diversion structures in many countries—can serve as an effective TLD. This study investigates the generation mechanisms of sloshing loads during the first-order transverse resonance of water in a U-shaped aqueduct using a two-dimensional (2D) numerical model. The results reveal that, at the equilibrium position, the free surface difference between the left and right walls, the horizontal force… More >

  • Open Access

    ARTICLE

    MHD Convective Flow of CNT/Water-Nanofluid in a 3D Cavity Incorporating Hot Cross-Shaped Obstacle

    Faiza Benabdallah1, Kaouther Ghachem1, Walid Hassen2, Haythem Baya2, Hind Albalawi3, Lioua Kolsi4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1839-1861, 2025, DOI:10.32604/cmes.2025.071678 - 26 November 2025

    Abstract Current developments in magnetohydrodynamic (MHD) convection and nanofluid engineering technology have have greatly enhanced heat transfer performance in process systems, particularly through the use of carbon nanotube (CNT)–based fluids that offer exceptional thermal conductivity. Despite extensive research on MHD natural convection in enclosures, the combined effects of complex obstacle geometries, magnetic fields, and CNT nanofluids in three-dimensional configurations remain insufficiently explored. This research investigates MHD natural convection of carbon nanotube (CNT)-water nanofluid within a three-dimensional cavity. The study considers an inclined cross-shaped hot obstacle, a configuration not extensively explored in previous works. The work aims… More >

Displaying 1-10 on page 1 of 334. Per Page