Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Preparation and Performance of a Fluorine-Free and Alkali-Free Liquid Accelerator for Shotcrete

    Jianbing Zhang1, Rongjin Liu1,2,3,*, Siyuan Fu1, Tianyu Gao1, Zhongfei Zhang1

    Journal of Renewable Materials, Vol.9, No.11, pp. 2001-2013, 2021, DOI:10.32604/jrm.2021.015812 - 04 June 2021

    Abstract Based on aluminum sulfate, a fluorine-free and alkali-free liquid accelerator (FF-AF-A) was prepared in this study. The setting time and compressive strength of three cement types with different FF-AF-A dosages were fully investigated. The compatibility of the FF-AF-A with the superplasticizers were also investigated, and the early hydration behavior and morphology of the hydration products of reference cement paste with the FF-AF-A were explored by hydration heat, X-ray diffractometry (XRD), and scanning electron microscopy (SEM). Test results indicated that adding the FF-AF-A at 8 wt% of the cement weight resulted in 2 min 35 s… More >

  • Open Access

    ARTICLE

    Effect of Soluble Components From Plant Aggregates on the Setting of the Lime-Based Binder

    Lepeng Wang1, Hélène Lenormand1,*, Hafida Zmamou1, Nathalie Leblanc1

    Journal of Renewable Materials, Vol.7, No.9, pp. 903-913, 2019, DOI:10.32604/jrm.2019.06788

    Abstract Plant aggregate-based building materials are a viable solution for reducing greenhouse gas emissions and providing good thermal and acoustic performances. In this study, the investigated lightweight mortars require a hydraulic reaction. Laboratory and on-site empirical observations about plant aggregate-based materials indicate a delay in setting time and a decrease in the mechanical performances of concretes based on plant aggregates. The natural origin of plant-aggregates causes a lot of variability in their properties. Related studies have shown that the incompatibility between plant aggregates and cement is mainly caused by the dissolved and decomposed components of plant… More >

Displaying 1-10 on page 1 of 2. Per Page