Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (513)
  • Open Access

    REVIEW

    Software Reliability Prediction Using Ensemble Learning on Selected Features in Imbalanced and Balanced Datasets: A Review

    Suneel Kumar Rath1, Madhusmita Sahu1, Shom Prasad Das2, Junali Jasmine Jena3, Chitralekha Jena4, Baseem Khan5,6,7,*, Ahmed Ali7, Pitshou Bokoro7

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1513-1536, 2024, DOI:10.32604/csse.2024.057067 - 22 November 2024

    Abstract Redundancy, correlation, feature irrelevance, and missing samples are just a few problems that make it difficult to analyze software defect data. Additionally, it might be challenging to maintain an even distribution of data relating to both defective and non-defective software. The latter software class’s data are predominately present in the dataset in the majority of experimental situations. The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification. Besides the successful feature selection approach, a novel variant of the ensemble learning… More >

  • Open Access

    ARTICLE

    Attribute Reduction on Decision Tables Based on Hausdorff Topology

    Nguyen Long Giang1, Tran Thanh Dai2, Le Hoang Son3, Tran Thi Ngan4, Nguyen Nhu Son1, Cu Nguyen Giap5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3097-3124, 2024, DOI:10.32604/cmc.2024.057383 - 18 November 2024

    Abstract Attribute reduction through the combined approach of Rough Sets (RS) and algebraic topology is an open research topic with significant potential for applications. Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem. However, the mentioned recent methods followed a strategy to construct a new measure for attribute selection. Meanwhile, the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct. Consequently, those methods tended to be inefficient for high-dimensional datasets. To overcome these challenges, we use the… More >

  • Open Access

    REVIEW

    A Review of Generative Adversarial Networks for Intrusion Detection Systems: Advances, Challenges, and Future Directions

    Monirah Al-Ajlan*, Mourad Ykhlef

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2053-2076, 2024, DOI:10.32604/cmc.2024.055891 - 18 November 2024

    Abstract The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems (IDSs). IDSs have become a research hotspot and have seen remarkable performance improvements. Generative adversarial networks (GANs) have also garnered increasing research interest recently due to their remarkable ability to generate data. This paper investigates the application of (GANs) in (IDS) and explores their current use within this research field. We delve into the adoption of GANs within signature-based, anomaly-based, and hybrid IDSs, focusing on their objectives, methodologies, and advantages. Overall, GANs have been widely employed, mainly focused on solving the More >

  • Open Access

    PROCEEDINGS

    Improved XFEM (IXFEM): Accurate, Efficient, Robust and Reliable Analysis for Arbitrary Multiple Crack Problems

    Lixiang Wang1, Longfei Wen2,3, Rong Tian2,3,*, Chun Feng1,4,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011137

    Abstract The extended finite element method (XFEM) has been successful in crack analysis but faces challenges in modeling multiple cracks. One challenge is the linear dependence and ill-conditioning of the global stiffness matrix, while another is the geometric description for multiple cracks. To address the first challenge, the Improved XFEM (IXFEM) [1–9] is extended to handle multiple crack problems, effectively eliminating issues of linear dependence and ill-conditioning. Additionally, to overcome the second challenge, a novel level set templated cover cutting method (LSTCCM) [10] is proposed, which combines the advantages of the level set method and cover More >

  • Open Access

    PROCEEDINGS

    Effect of Channel Aspect Ratio on Flow Boiling in Mini-Channels

    Wei Lu1,3, Yujie Chen2,*, Bo Yu2, Dongliang Sun2, Wei Zhang2, Yanru Yang1,3, Xiaodong Wang1,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012265

    Abstract Flow boiling offers superior heat transfer performance compared to single-phase flow, therefore holding significant potential for application in thermal management. In mini-channel applications, due to their narrow dimensions, the size characteristics of the channel have a particularly notable impact on bubble dynamics and flow boiling heat transfer performance. This study employs the VOSET method to explore the impact of different aspect ratios (1:3, 1:2, 1:1, 2:1, 3:1) on the heat transfer performance of mini-channels. By maintaining a consistent equivalent diameter across the channels, the study aims to unveil the mechanism by which aspect ratios affect… More >

  • Open Access

    ARTICLE

    Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set

    Gang Wang*, Yuedong Wu, Xiaoyi Qian, Yi Zhao

    Energy Engineering, Vol.121, No.11, pp. 3417-3435, 2024, DOI:10.32604/ee.2024.052268 - 21 October 2024

    Abstract A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that the More >

  • Open Access

    ARTICLE

    Optimizing Internet of Things Device Security with a Globalized Firefly Optimization Algorithm for Attack Detection

    Arkan Kh Shakr Sabonchi*

    Journal on Artificial Intelligence, Vol.6, pp. 261-282, 2024, DOI:10.32604/jai.2024.056552 - 18 October 2024

    Abstract The phenomenal increase in device connectivity is making the signaling and resource-based operational integrity of networks at the node level increasingly prone to distributed denial of service (DDoS) attacks. The current growth rate in the number of Internet of Things (IoT) attacks executed at the time of exchanging data over the Internet represents massive security hazards to IoT devices. In this regard, the present study proposes a new hybrid optimization technique that combines the firefly optimization algorithm with global searches for use in attack detection on IoT devices. We preprocessed two datasets, CICIDS and UNSW-NB15,… More >

  • Open Access

    ARTICLE

    Industrial Fusion Cascade Detection of Solder Joint

    Chunyuan Li1,2,3, Peng Zhang1,2,3, Shuangming Wang4, Lie Liu4, Mingquan Shi2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1197-1214, 2024, DOI:10.32604/cmc.2024.055893 - 15 October 2024

    Abstract With the remarkable advancements in machine vision research and its ever-expanding applications, scholars have increasingly focused on harnessing various vision methodologies within the industrial realm. Specifically, detecting vehicle floor welding points poses unique challenges, including high operational costs and limited portability in practical settings. To address these challenges, this paper innovatively integrates template matching and the Faster RCNN algorithm, presenting an industrial fusion cascaded solder joint detection algorithm that seamlessly blends template matching with deep learning techniques. This algorithm meticulously weights and fuses the optimized features of both methodologies, enhancing the overall detection capabilities. Furthermore,… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024

    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

Displaying 1-10 on page 1 of 513. Per Page