Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Learning Dual-Layer User Representation for Enhanced Item Recommendation

    Fuxi Zhu1, Jin Xie2,*, Mohammed Alshahrani3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 949-971, 2024, DOI:10.32604/cmc.2024.051046 - 18 July 2024

    Abstract User representation learning is crucial for capturing different user preferences, but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data, and thus cannot be measured directly. Text-based data models can learn user representations by mining latent semantics, which is beneficial to enhancing the semantic function of user representations. However, these technologies only extract common features in historical records and cannot represent changes in user intentions. However, sequential feature can express the user’s interests and intentions that change time by time. But the sequential recommendation… More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623 - 27 February 2024

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

Displaying 1-10 on page 1 of 2. Per Page