Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (168)
  • Open Access

    ARTICLE

    Dynamic Deep Learning for Enhanced Reliability in Wireless Sensor Networks: The DTLR-Net Approach

    Gajjala Savithri1,2, N. Raghavendra Sai1,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2547-2569, 2024, DOI:10.32604/cmc.2024.055827 - 18 November 2024

    Abstract In the world of wireless sensor networks (WSNs), optimizing performance and extending network lifetime are critical goals. In this paper, we propose a new model called DTLR-Net (Deep Temporal LSTM Regression Network) that employs long-short-term memory and is effective for long-term dependencies. Mobile sinks can move in arbitrary patterns, so the model employs long short-term memory (LSTM) networks to handle such movements. The parameters were initialized iteratively, and each node updated its position, mobility level, and other important metrics at each turn, with key measurements including active or inactive node ratio, energy consumption per cycle,… More >

  • Open Access

    ARTICLE

    Optimization Model Proposal for Traffic Differentiation in Wireless Sensor Networks

    Adisa Hasković Džubur*, Samir Čaušević, Belma Memić, Muhamed Begović, Elma Avdagić-Golub, Alem Čolaković

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1059-1084, 2024, DOI:10.32604/cmc.2024.055386 - 15 October 2024

    Abstract Wireless sensor networks (WSNs) are characterized by heterogeneous traffic types (audio, video, data) and diverse application traffic requirements. This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs. The requirements for each class regarding sensitivity to QoS (Quality of Service) parameters, such as loss, delay, and jitter, are described. These classes encompass real-time and delay-tolerant traffic. Given that QoS evaluation is a multi-criteria decision-making problem, we employed the AHP (Analytical Hierarchy Process) method for multi-criteria optimization. As a result of this approach, we derived weight values for different traffic… More >

  • Open Access

    ARTICLE

    A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection

    Chandraumakantham Om Kumar1,*, Sudhakaran Gajendran2, Suguna Marappan1, Mohammed Zakariah3, Abdulaziz S. Almazyad4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 471-501, 2024, DOI:10.32604/cmc.2024.054966 - 15 October 2024

    Abstract The security of the wireless sensor network-Internet of Things (WSN-IoT) network is more challenging due to its randomness and self-organized nature. Intrusion detection is one of the key methodologies utilized to ensure the security of the network. Conventional intrusion detection mechanisms have issues such as higher misclassification rates, increased model complexity, insignificant feature extraction, increased training time, increased run time complexity, computation overhead, failure to identify new attacks, increased energy consumption, and a variety of other factors that limit the performance of the intrusion system model. In this research a security framework for WSN-IoT, through… More >

  • Open Access

    ARTICLE

    Elevating Localization Accuracy in Wireless Sensor Networks: A Refined DV-Hop Approach

    Muhammad Aamer Ejaz1,*, Kamalrulnizam Abu Bakar1, Ismail Fauzi Bin Isnin1, Babangida Isyaku1,2,*, Taiseer Abdalla Elfadil Eisa3, Abdelzahir Abdelmaboud4, Asma Abbas Hassan Elnour3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1511-1528, 2024, DOI:10.32604/cmc.2024.054938 - 15 October 2024

    Abstract Localization is crucial in wireless sensor networks for various applications, such as tracking objects in outdoor environments where GPS (Global Positioning System) or prior installed infrastructure is unavailable. However, traditional techniques involve many anchor nodes, increasing costs and reducing accuracy. Existing solutions do not address the selection of appropriate anchor nodes and selecting localized nodes as assistant anchor nodes for the localization process, which is a critical element in the localization process. Furthermore, an inaccurate average hop distance significantly affects localization accuracy. We propose an improved DV-Hop algorithm based on anchor sets (AS-IDV-Hop) to improve… More >

  • Open Access

    ARTICLE

    Value Function Mechanism in WSNs-Based Mango Plantation Monitoring System

    Wen-Tsai Sung1, Indra Griha Tofik Isa1,2, Sung-Jung Hsiao3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3733-3759, 2024, DOI:10.32604/cmc.2024.053634 - 12 September 2024

    Abstract Mango fruit is one of the main fruit commodities that contributes to Taiwan’s income. The implementation of technology is an alternative to increasing the quality and quantity of mango plantation product productivity. In this study, a Wireless Sensor Networks (“WSNs”)-based intelligent mango plantation monitoring system will be developed that implements deep reinforcement learning (DRL) technology in carrying out prediction tasks based on three classifications: “optimal,” “sub-optimal,” or “not-optimal” conditions based on three parameters including humidity, temperature, and soil moisture. The key idea is how to provide a precise decision-making mechanism in the real-time monitoring system.… More >

  • Open Access

    ARTICLE

    AI-Driven Energy Optimization in UAV-Assisted Routing for Enhanced Wireless Sensor Networks Performance

    Syed Kamran Haider1,2, Abbas Ahmed2, Noman Mujeeb Khan2, Ali Nauman3,*, Sung Won Kim3,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4085-4110, 2024, DOI:10.32604/cmc.2024.052997 - 12 September 2024

    Abstract In recent advancements within wireless sensor networks (WSN), the deployment of unmanned aerial vehicles (UAVs) has emerged as a groundbreaking strategy for enhancing routing efficiency and overall network functionality. This research introduces a sophisticated framework, driven by computational intelligence, that merges clustering techniques with UAV mobility to refine routing strategies in WSNs. The proposed approach divides the sensor field into distinct sectors and implements a novel weighting system for the selection of cluster heads (CHs). This system is primarily aimed at reducing energy consumption through meticulously planned routing and path determination. Employing a greedy algorithm More >

  • Open Access

    ARTICLE

    Bio-Inspired Intelligent Routing in WSN: Integrating Mayfly Optimization and Enhanced Ant Colony Optimization for Energy-Efficient Cluster Formation and Maintenance

    V. G. Saranya*, S. Karthik

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 127-150, 2024, DOI:10.32604/cmes.2024.053825 - 20 August 2024

    Abstract Wireless Sensor Networks (WSNs) are a collection of sensor nodes distributed in space and connected through wireless communication. The sensor nodes gather and store data about the real world around them. However, the nodes that are dependent on batteries will ultimately suffer an energy loss with time, which affects the lifetime of the network. This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability. The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization (MFOA-EACO), where the Mayfly Optimization Algorithm (MFOA) is used to… More >

  • Open Access

    ARTICLE

    A Traffic-Aware and Cluster-Based Energy Efficient Routing Protocol for IoT-Assisted WSNs

    Hina Gul1, Sana Ullah1, Ki-Il Kim2,*, Farman Ali3

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1831-1850, 2024, DOI:10.32604/cmc.2024.052841 - 15 August 2024

    Abstract The seamless integration of intelligent Internet of Things devices with conventional wireless sensor networks has revolutionized data communication for different applications, such as remote health monitoring, industrial monitoring, transportation, and smart agriculture. Efficient and reliable data routing is one of the major challenges in the Internet of Things network due to the heterogeneity of nodes. This paper presents a traffic-aware, cluster-based, and energy-efficient routing protocol that employs traffic-aware and cluster-based techniques to improve the data delivery in such networks. The proposed protocol divides the network into clusters where optimal cluster heads are selected among super… More >

  • Open Access

    ARTICLE

    EECLP: A Wireless Sensor Networks Energy Efficient Cross-Layer Protocol

    Mohammed Kaddi1,*, Mohammed Omari2, Moamen Alnatoor1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2611-2631, 2024, DOI:10.32604/cmc.2024.052048 - 15 August 2024

    Abstract Recent advancements in wireless communications have allowed the birth of novel wireless sensor networks (WSN). A sensor network comprises several micro-sensors deployed randomly in an area of interest. A micro-sensor is provided with an energy resource to supply electricity to all of its components. However, the disposed energy resource is limited and battery replacement is generally infeasible. With this restriction, the sensors must conserve energy to prolong their lifetime. Various energy conservation strategies for WSNs have been presented in the literature, from the application to the physical layer. Most of these solutions focus only on… More >

  • Open Access

    ARTICLE

    A Reputation-Based AODV Protocol for Blackhole and Malfunction Nodes Detection and Avoidance

    Qussai M. Yaseen1,2,*, Monther Aldwairi2,3, Ahmad Manasrah4,5

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1867-1888, 2024, DOI:10.32604/cmc.2024.051179 - 15 August 2024

    Abstract Enhancing the security of Wireless Sensor Networks (WSNs) improves the usability of their applications. Therefore, finding solutions to various attacks, such as the blackhole attack, is crucial for the success of WSN applications. This paper proposes an enhanced version of the AODV (Ad Hoc On-Demand Distance Vector) protocol capable of detecting blackholes and malfunctioning benign nodes in WSNs, thereby avoiding them when delivering packets. The proposed version employs a network-based reputation system to select the best and most secure path to a destination. To achieve this goal, the proposed version utilizes the Watchdogs/Pathrater mechanisms in… More >

Displaying 1-10 on page 1 of 168. Per Page