Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access


    XA-GANomaly: An Explainable Adaptive Semi-Supervised Learning Method for Intrusion Detection Using GANomaly

    Yuna Han1, Hangbae Chang2,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 221-237, 2023, DOI:10.32604/cmc.2023.039463

    Abstract Intrusion detection involves identifying unauthorized network activity and recognizing whether the data constitute an abnormal network transmission. Recent research has focused on using semi-supervised learning mechanisms to identify abnormal network traffic to deal with labeled and unlabeled data in the industry. However, real-time training and classifying network traffic pose challenges, as they can lead to the degradation of the overall dataset and difficulties preventing attacks. Additionally, existing semi-supervised learning research might need to analyze the experimental results comprehensively. This paper proposes XA-GANomaly, a novel technique for explainable adaptive semi-supervised learning using GANomaly, an image anomalous detection model that dynamically trains… More >

  • Open Access


    A Method for Classification and Evaluation of Pilot’s Mental States Based on CNN

    Qianlei Wang1,2,3,*, Zaijun Wang3, Renhe Xiong4, Xingbin Liao1,2, Xiaojun Tan5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1999-2020, 2023, DOI:10.32604/csse.2023.034183

    Abstract How to accurately recognize the mental state of pilots is a focus in civil aviation safety. The mental state of pilots is closely related to their cognitive ability in piloting. Whether the cognitive ability meets the standard is related to flight safety. However, the pilot's working state is unique, which increases the difficulty of analyzing the pilot's mental state. In this work, we proposed a Convolutional Neural Network (CNN) that merges attention to classify the mental state of pilots through electroencephalography (EEG). Considering the individual differences in EEG, semi-supervised learning based on improved K-Means is used in the model training… More >

  • Open Access


    Using Informative Score for Instance Selection Strategy in Semi-Supervised Sentiment Classification

    Vivian Lee Lay Shan, Gan Keng Hoon*, Tan Tien Ping, Rosni Abdullah

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4801-4818, 2023, DOI:10.32604/cmc.2023.033752

    Abstract Sentiment classification is a useful tool to classify reviews about sentiments and attitudes towards a product or service. Existing studies heavily rely on sentiment classification methods that require fully annotated inputs. However, there is limited labelled text available, making the acquirement process of the fully annotated input costly and labour-intensive. Lately, semi-supervised methods emerge as they require only partially labelled input but perform comparably to supervised methods. Nevertheless, some works reported that the performance of the semi-supervised model degraded after adding unlabelled instances into training. Literature also shows that not all unlabelled instances are equally useful; thus identifying the informative… More >

  • Open Access


    Drug–Target Interaction Prediction Model Using Optimal Recurrent Neural Network

    G. Kavipriya*, D. Manjula

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1675-1689, 2023, DOI:10.32604/iasc.2023.027670

    Abstract Drug-target interactions prediction (DTIP) remains an important requirement in the field of drug discovery and human medicine. The identification of interaction among the drug compound and target protein plays an essential process in the drug discovery process. It is a lengthier and complex process for predicting the drug target interaction (DTI) utilizing experimental approaches. To resolve these issues, computational intelligence based DTIP techniques were developed to offer an efficient predictive model with low cost. The recently developed deep learning (DL) models can be employed for the design of effective predictive approaches for DTIP. With this motivation, this paper presents a… More >

  • Open Access


    A Study on Cascade R-CNN-Based Dangerous Goods Detection Using X-Ray Image

    Sang-Hyun Lee*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4245-4260, 2022, DOI:10.32604/cmc.2022.026012

    Abstract X-ray inspection equipment is divided into small baggage inspection equipment and large cargo inspection equipment. In the case of inspection using X-ray scanning equipment, it is possible to identify the contents of goods, unauthorized transport, or hidden goods in real-time by-passing cargo through X-rays without opening it. In this paper, we propose a system for detecting dangerous objects in X-ray images using the Cascade Region-based Convolutional Neural Network (Cascade R-CNN) model, and the data used for learning consists of dangerous goods, storage media, firearms, and knives. In addition, to minimize the overfitting problem caused by the lack of data to… More >

  • Open Access


    Threshold Filtering Semi-Supervised Learning Method for SAR Target Recognition

    Linshan Shen1, Ye Tian1,*, Liguo Zhang1,2, Guisheng Yin1, Tong Shuai3, Shuo Liang3, Zhuofei Wu4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 465-476, 2022, DOI:10.32604/cmc.2022.027488

    Abstract The semi-supervised deep learning technology driven by a small part of labeled data and a large amount of unlabeled data has achieved excellent performance in the field of image processing. However, the existing semi-supervised learning techniques are all carried out under the assumption that the labeled data and the unlabeled data are in the same distribution, and its performance is mainly due to the two being in the same distribution state. When there is out-of-class data in unlabeled data, its performance will be affected. In practical applications, it is difficult to ensure that unlabeled data does not contain out-of-category data,… More >

  • Open Access


    Iterative Semi-Supervised Learning Using Softmax Probability

    Heewon Chung, Jinseok Lee*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5607-5628, 2022, DOI:10.32604/cmc.2022.028154

    Abstract For the classification problem in practice, one of the challenging issues is to obtain enough labeled data for training. Moreover, even if such labeled data has been sufficiently accumulated, most datasets often exhibit long-tailed distribution with heavy class imbalance, which results in a biased model towards a majority class. To alleviate such class imbalance, semi-supervised learning methods using additional unlabeled data have been considered. However, as a matter of course, the accuracy is much lower than that from supervised learning. In this study, under the assumption that additional unlabeled data is available, we propose the iterative semi-supervised learning algorithms, which… More >

  • Open Access


    The Impact of Semi-Supervised Learning on the Performance of Intelligent Chatbot System

    Sudan Prasad Uprety, Seung Ryul Jeong*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3937-3952, 2022, DOI:10.32604/cmc.2022.023127

    Abstract Artificial intelligent based dialog systems are getting attention from both business and academic communities. The key parts for such intelligent chatbot systems are domain classification, intent detection, and named entity recognition. Various supervised, unsupervised, and hybrid approaches are used to detect each field. Such intelligent systems, also called natural language understanding systems analyze user requests in sequential order: domain classification, intent, and entity recognition based on the semantic rules of the classified domain. This sequential approach propagates the downstream error; i.e., if the domain classification model fails to classify the domain, intent and entity recognition fail. Furthermore, training such intelligent… More >

  • Open Access


    Covid-19 CT Lung Image Segmentation Using Adaptive Donkey and Smuggler Optimization Algorithm

    P. Prabu1, K. Venkatachalam2, Ala Saleh Alluhaidan3,*, Radwa Marzouk4, Myriam Hadjouni5, Sahar A. El_Rahman5,6

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 1133-1152, 2022, DOI:10.32604/cmc.2022.020919

    Abstract COVID’19 has caused the entire universe to be in existential health crisis by spreading globally in the year 2020. The lungs infection is detected in Computed Tomography (CT) images which provide the best way to increase the existing healthcare schemes in preventing the deadly virus. Nevertheless, separating the infected areas in CT images faces various issues such as low-intensity difference among normal and infectious tissue and high changes in the characteristics of the infection. To resolve these issues, a new inf-Net (Lung Infection Segmentation Deep Network) is designed for detecting the affected areas from the CT images automatically. For the… More >

  • Open Access


    Mixed Re-Sampled Class-Imbalanced Semi-Supervised Learning for Skin Lesion Classification

    Ye Tian1, Liguo Zhang1,2, Linshan Shen1,*, Guisheng Yin1, Lei Chen3

    Intelligent Automation & Soft Computing, Vol.28, No.1, pp. 195-211, 2021, DOI:10.32604/iasc.2021.016314

    Abstract Skin cancer is one of the most common types of cancer in the world, melanoma is considered to be the deadliest type among other skin cancers. Quite recently, automated skin lesion classification in dermoscopy images has become a hot and challenging research topic due to its essential way to improve diagnostic performance, thus reducing melanoma deaths. Convolution Neural Networks (CNNs) are at the heart of this promising performance among a variety of supervised classification techniques. However, these successes rely heavily on large amounts of class-balanced clearly labeled samples, which are expensive to obtain for skin lesion classification in the real… More >

Displaying 1-10 on page 1 of 15. Per Page  

Share Link