Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (49)
  • Open Access

    ARTICLE

    PCB CT Image Element Segmentation Model Optimizing the Semantic Perception of Connectivity Relationship

    Chen Chen, Kai Qiao, Jie Yang, Jian Chen, Bin Yan*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2629-2642, 2024, DOI:10.32604/cmc.2024.056038 - 18 November 2024

    Abstract Computed Tomography (CT) is a commonly used technology in Printed Circuit Boards (PCB) non-destructive testing, and element segmentation of CT images is a key subsequent step. With the development of deep learning, researchers began to exploit the “pre-training and fine-tuning” training process for multi-element segmentation, reducing the time spent on manual annotation. However, the existing element segmentation model only focuses on the overall accuracy at the pixel level, ignoring whether the element connectivity relationship can be correctly identified. To this end, this paper proposes a PCB CT image element segmentation model optimizing the semantic perception… More >

  • Open Access

    ARTICLE

    ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images

    Jing Wang1,2,*, Chen Zhang1, Tianwen Lin1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1907-1925, 2024, DOI:10.32604/cmc.2024.052597 - 15 August 2024

    Abstract When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe and CHN6-CUG… More >

  • Open Access

    ARTICLE

    Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

    Asifa Mehmood Qureshi1, Abdul Haleem Butt1, Abdulwahab Alazeb2, Naif Al Mudawi2, Mohammad Alonazi3, Nouf Abdullah Almujally4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3315-3332, 2024, DOI:10.32604/cmc.2024.052582 - 15 August 2024

    Abstract Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy. Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected… More >

  • Open Access

    ARTICLE

    ED-Ged: Nighttime Image Semantic Segmentation Based on Enhanced Detail and Bidirectional Guidance

    Xiaoli Yuan, Jianxun Zhang*, Xuejie Wang, Zhuhong Chu

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2443-2462, 2024, DOI:10.32604/cmc.2024.052285 - 15 August 2024

    Abstract Semantic segmentation of driving scene images is crucial for autonomous driving. While deep learning technology has significantly improved daytime image semantic segmentation, nighttime images pose challenges due to factors like poor lighting and overexposure, making it difficult to recognize small objects. To address this, we propose an Image Adaptive Enhancement (IAEN) module comprising a parameter predictor (Edip), multiple image processing filters (Mdif), and a Detail Processing Module (DPM). Edip combines image processing filters to predict parameters like exposure and hue, optimizing image quality. We adopt a novel image encoder to enhance parameter prediction accuracy by More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805 - 20 June 2024

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450 - 20 June 2024

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation

    Qixiang Tong, Zhipeng Zhu, Min Zhang, Kerui Cao, Haihua Xing*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1353-1375, 2024, DOI:10.32604/cmc.2024.049187 - 25 April 2024

    Abstract High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presence of occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficulty of segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scale features based on DeepLabv3+ is designed to address the difficulties of small object segmentation and blurred target edge segmentation. First, we use CrossFormer as the backbone feature extraction network to achieve the interaction between large- and small-scale features, and establish self-attention associations between features at both large and small… More >

  • Open Access

    ARTICLE

    Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation

    Dingping Chen1, Zhiheng Zhu2, Jinyang Fu1,3, Jilin He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1679-1703, 2024, DOI:10.32604/cmc.2024.049048 - 25 April 2024

    Abstract The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safety and performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of road tunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combined with a deep neural network model is an effective means to realize the localization and identification of crack defects on the surface of road tunnels. We propose a complete set of automatic inspection methods for identifying cracks on the walls… More >

  • Open Access

    ARTICLE

    Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images

    Supeng Yu1, Fen Huang1,*, Chengcheng Fan2,3,4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 549-562, 2024, DOI:10.32604/cmc.2024.048608 - 25 April 2024

    Abstract Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing image processing. Most current methods rely on fully supervised learning, which necessitates enormous human effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped with a distinct decoder module dedicated… More >

  • Open Access

    ARTICLE

    A Random Fusion of Mix3D and PolarMix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud

    Bo Liu1,2, Li Feng1,*, Yufeng Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 845-862, 2024, DOI:10.32604/cmes.2024.047695 - 16 April 2024

    Abstract This paper focuses on the effective utilization of data augmentation techniques for 3D lidar point clouds to enhance the performance of neural network models. These point clouds, which represent spatial information through a collection of 3D coordinates, have found wide-ranging applications. Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities. Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds. However, there has been a lack of focus on making the… More >

Displaying 1-10 on page 1 of 49. Per Page