Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    Context Patch Fusion with Class Token Enhancement for Weakly Supervised Semantic Segmentation

    Yiyang Fu1, Hui Li2,*, Wangyu Wu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074467 - 29 January 2026

    Abstract Weakly Supervised Semantic Segmentation (WSSS), which relies only on image-level labels, has attracted significant attention for its cost-effectiveness and scalability. Existing methods mainly enhance inter-class distinctions and employ data augmentation to mitigate semantic ambiguity and reduce spurious activations. However, they often neglect the complex contextual dependencies among image patches, resulting in incomplete local representations and limited segmentation accuracy. To address these issues, we propose the Context Patch Fusion with Class Token Enhancement (CPF-CTE) framework, which exploits contextual relations among patches to enrich feature representations and improve segmentation. At its core, the Contextual-Fusion Bidirectional Long Short-Term More >

  • Open Access

    ARTICLE

    CAWASeg: Class Activation Graph Driven Adaptive Weight Adjustment for Semantic Segmentation

    Hailong Wang1, Minglei Duan2, Lu Yao3, Hao Li1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072942 - 12 January 2026

    Abstract In image analysis, high-precision semantic segmentation predominantly relies on supervised learning. Despite significant advancements driven by deep learning techniques, challenges such as class imbalance and dynamic performance evaluation persist. Traditional weighting methods, often based on pre-statistical class counting, tend to overemphasize certain classes while neglecting others, particularly rare sample categories. Approaches like focal loss and other rare-sample segmentation techniques introduce multiple hyperparameters that require manual tuning, leading to increased experimental costs due to their instability. This paper proposes a novel CAWASeg framework to address these limitations. Our approach leverages Grad-CAM technology to generate class activation… More >

  • Open Access

    ARTICLE

    A Study on Improving the Accuracy of Semantic Segmentation for Autonomous Driving

    Bin Zhang*, Zhancheng Xu

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-12, 2026, DOI:10.32604/cmc.2025.069979 - 09 December 2025

    Abstract This study aimed to enhance the performance of semantic segmentation for autonomous driving by improving the 2DPASS model. Two novel improvements were proposed and implemented in this paper: dynamically adjusting the loss function ratio and integrating an attention mechanism (CBAM). First, the loss function weights were adjusted dynamically. The grid search method is used for deciding the best ratio of 7:3. It gives greater emphasis to the cross-entropy loss, which resulted in better segmentation performance. Second, CBAM was applied at different layers of the 2D encoder. Heatmap analysis revealed that introducing it after the second… More >

  • Open Access

    ARTICLE

    Intelligent Semantic Segmentation with Vision Transformers for Aerial Vehicle Monitoring

    Moneerah Alotaibi*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.069195 - 10 November 2025

    Abstract Advanced traffic monitoring systems encounter substantial challenges in vehicle detection and classification due to the limitations of conventional methods, which often demand extensive computational resources and struggle with diverse data acquisition techniques. This research presents a novel approach for vehicle classification and recognition in aerial image sequences, integrating multiple advanced techniques to enhance detection accuracy. The proposed model begins with preprocessing using Multiscale Retinex (MSR) to enhance image quality, followed by Expectation-Maximization (EM) Segmentation for precise foreground object identification. Vehicle detection is performed using the state-of-the-art YOLOv10 framework, while feature extraction incorporates Maximally Stable Extremal… More >

  • Open Access

    ARTICLE

    GLMCNet: A Global-Local Multiscale Context Network for High-Resolution Remote Sensing Image Semantic Segmentation

    Yanting Zhang1, Qiyue Liu1,2, Chuanzhao Tian1,2,*, Xuewen Li1, Na Yang1, Feng Zhang1, Hongyue Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068403 - 10 November 2025

    Abstract High-resolution remote sensing images (HRSIs) are now an essential data source for gathering surface information due to advancements in remote sensing data capture technologies. However, their significant scale changes and wealth of spatial details pose challenges for semantic segmentation. While convolutional neural networks (CNNs) excel at capturing local features, they are limited in modeling long-range dependencies. Conversely, transformers utilize multihead self-attention to integrate global context effectively, but this approach often incurs a high computational cost. This paper proposes a global-local multiscale context network (GLMCNet) to extract both global and local multiscale contextual information from HRSIs.… More >

  • Open Access

    ARTICLE

    BSDNet: Semantic Information Distillation-Based for Bilateral-Branch Real-Time Semantic Segmentation on Street Scene Image

    Huan Zeng, Jianxun Zhang*, Hongji Chen, Xinwei Zhu

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3879-3896, 2025, DOI:10.32604/cmc.2025.066803 - 23 September 2025

    Abstract Semantic segmentation in street scenes is a crucial technology for autonomous driving to analyze the surrounding environment. In street scenes, issues such as high image resolution caused by a large viewpoints and differences in object scales lead to a decline in real-time performance and difficulties in multi-scale feature extraction. To address this, we propose a bilateral-branch real-time semantic segmentation method based on semantic information distillation (BSDNet) for street scene images. The BSDNet consists of a Feature Conversion Convolutional Block (FCB), a Semantic Information Distillation Module (SIDM), and a Deep Aggregation Atrous Convolution Pyramid Pooling (DASP). More >

  • Open Access

    ARTICLE

    Intelligent Concrete Defect Identification Using an Attention-Enhanced VGG16-U-Net

    Caiping Huang*, Hui Li, Zihang Yu

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1287-1304, 2025, DOI:10.32604/sdhm.2025.065930 - 05 September 2025

    Abstract Semantic segmentation of concrete bridge defect images frequently encounters challenges due to insufficient precision and the limited computational capabilities of mobile devices, thereby considerably affecting the reliability of bridge defect monitoring and health assessment. To tackle these issues, a concrete defects dataset (including spalling, crack, and exposed steel rebar) was curated and multiple semantic segmentation models were developed. In these models, a deep convolutional network or a lightweight convolutional network were employed as the backbone feature extraction networks, with different loss functions configured and various attention mechanism modules introduced for conducting multi-angle comparative research. The… More >

  • Open Access

    REVIEW

    Deep Multi-Scale and Attention-Based Architectures for Semantic Segmentation in Biomedical Imaging

    Majid Harouni1,*, Vishakha Goyal1, Gabrielle Feldman1, Sam Michael2, Ty C. Voss1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 331-366, 2025, DOI:10.32604/cmc.2025.067915 - 29 August 2025

    Abstract Semantic segmentation plays a foundational role in biomedical image analysis, providing precise information about cellular, tissue, and organ structures in both biological and medical imaging modalities. Traditional approaches often fail in the face of challenges such as low contrast, morphological variability, and densely packed structures. Recent advancements in deep learning have transformed segmentation capabilities through the integration of fine-scale detail preservation, coarse-scale contextual modeling, and multi-scale feature fusion. This work provides a comprehensive analysis of state-of-the-art deep learning models, including U-Net variants, attention-based frameworks, and Transformer-integrated networks, highlighting innovations that improve accuracy, generalizability, and computational More >

  • Open Access

    ARTICLE

    CGMISeg: Context-Guided Multi-Scale Interactive for Efficient Semantic Segmentation

    Ze Wang, Jin Qin, Chuhua Huang*, Yongjun Zhang*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5811-5829, 2025, DOI:10.32604/cmc.2025.064537 - 30 July 2025

    Abstract Semantic segmentation has made significant breakthroughs in various application fields, but achieving both accurate and efficient segmentation with limited computational resources remains a major challenge. To this end, we propose CGMISeg, an efficient semantic segmentation architecture based on a context-guided multi-scale interaction strategy, aiming to significantly reduce computational overhead while maintaining segmentation accuracy. CGMISeg consists of three core components: context-aware attention modulation, feature reconstruction, and cross-information fusion. Context-aware attention modulation is carefully designed to capture key contextual information through channel and spatial attention mechanisms. The feature reconstruction module reconstructs contextual information from different scales, modeling… More >

  • Open Access

    ARTICLE

    Remote Sensing Image Information Granulation Transformer for Semantic Segmentation

    Haoyang Tang1,2, Kai Zeng1,2,*

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1485-1506, 2025, DOI:10.32604/cmc.2025.064441 - 09 June 2025

    Abstract Semantic segmentation provides important technical support for Land cover/land use (LCLU) research. By calculating the cosine similarity between feature vectors, transformer-based models can effectively capture the global information of high-resolution remote sensing images. However, the diversity of detailed and edge features within the same class of ground objects in high-resolution remote sensing images leads to a dispersed embedding distribution. The dispersed feature distribution enlarges feature vector angles and reduces cosine similarity, weakening the attention mechanism’s ability to identify the same class of ground objects. To address this challenge, remote sensing image information granulation transformer for… More >

Displaying 1-10 on page 1 of 73. Per Page