Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

    Wael A. Altabey*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1529-1545, 2025, DOI:10.32604/sdhm.2025.069003 - 17 November 2025

    Abstract This paper aims to study a novel smart self-powered wireless lightweight (SPWL) bridge health monitoring sensor, which integrates key technologies such as large-scale, low-power wireless data transmission, environmental energy self-harvesting, and intelligent perception, and can operate stably for a long time in complex and changing environments. The self-powered system of the sensor can meet the needs of long-term bridge service performance monitoring, significantly improving the coverage and efficiency of monitoring. By optimizing the sensor system design, the maximum energy conversion of the energy harvesting unit is achieved. In order to verify the function and practicality More > Graphic Abstract

    The Advanced Structural Health Monitoring by Non-Destructive Self-Powered Wireless Lightweight Sensor

  • Open Access

    ARTICLE

    Thermal Performance and Application of a Self-Powered Coal Monitoring System with Heat Pipe and Thermoelectric Integration for Spontaneous Combustion Prevention

    Tao Lin1,*, Chengdai Chen1, Liyao Chen1, Fengqin Han1, Guanghui He2

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1661-1680, 2025, DOI:10.32604/fhmt.2025.070787 - 31 October 2025

    Abstract Targeting spontaneous coal combustion during stacking, we developed an efficient heat dissipation & self-supplied wireless temperature measurement system (SPWTM) with gravity heat pipe-thermoelectric integration for dual safety. The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications. The results show that, firstly, the effects of coal pile heat production power and burial depth, along with heat pipe startup and heat transfer characteristics. At 60 cm burial depth, the condensation section dissipates 98% coal pile heat via natural convection. Secondly, for the temperature measurement error caused by… More >

  • Open Access

    ARTICLE

    Wireless Self-Powered Vibration Sensor System for Intelligent Spindle Monitoring

    Lei Yu1, Hongjun Wang1,*, Yubin Yue1, Shucong Liu1, Xiangxiang Mao2, Fengshou Gu3

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 315-336, 2023, DOI:10.32604/sdhm.2022.024899 - 02 August 2023

    Abstract In recent years, high-end equipment is widely used in industry and the accuracy requirements of the equipment have been risen year by year. During the machining process, the high-end equipment failure may have a great impact on the product quality. It is necessary to monitor the status of equipment and to predict fault diagnosis. At present, most of the condition monitoring devices for mechanical equipment have problems of large size, low precision and low energy utilization. A wireless self-powered intelligent spindle vibration acceleration sensor system based on piezoelectric energy harvesting is proposed. Based on rotor… More >

Displaying 1-10 on page 1 of 3. Per Page