Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Multi-UAV Collaborative Mission Planning Method for Self-Organized Sensor Data Acquisition

    Shijie Yang1, Jiateng Yuan1, Zhipeng Zhang1, Zhibo Chen1,2, Hanchao Zhang4, Xiaohui Cui1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1529-1563, 2024, DOI:10.32604/cmc.2024.055402 - 15 October 2024

    Abstract In recent years, sensor technology has been widely used in the defense and control of sensitive areas in cities, or in various scenarios such as early warning of forest fires, monitoring of forest pests and diseases, and protection of endangered animals. Deploying sensors to collect data and then utilizing unmanned aerial vehicle (UAV) to collect the data stored in the sensors has replaced traditional manual data collection as the dominant method. The current strategies for efficient data collection in above scenarios are still imperfect, and the low quality of the collected data and the excessive… More >

  • Open Access

    ARTICLE

    Phase Transition in a Dense Swarm of Self-Propelled Bots

    Dmitry Bratsun*, Kirill Kostarev

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.8, pp. 1785-1798, 2024, DOI:10.32604/fdmp.2024.048206 - 06 August 2024

    Abstract Swarms of self-organizing bots are becoming important elements in various technical systems, which include the control of bacterial cyborgs in biomedical applications, technologies for creating new metamaterials with internal structure, self-assembly processes of complex supramolecular structures in disordered media, etc. In this work, we theoretically study the effect of sudden fluidization of a dense group of bots, each of which is a source of heat and follows a simple algorithm to move in the direction of the gradient of the global temperature field. We show that, under certain conditions, an aggregate of self-propelled bots can… More > Graphic Abstract

    Phase Transition in a Dense Swarm of Self-Propelled Bots

  • Open Access

    ARTICLE

    Tuning the Spatially Controlled Growth, Structural Self-Organizing and Cluster-Assembling of the Carbyne-Enriched Nano-Matrix during Ion-Assisted Pulse-Plasma Deposition

    Alexander Lukin1,*, Oğuz Gülseren2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.6, pp. 1763-1779, 2022, DOI:10.32604/fdmp.2022.022016 - 27 June 2022

    Abstract Carbyne-enriched nanomaterials are of current interest in nanotechnology-related applications. The properties of these nanomaterials greatly depend on their production process. In particular, structural self-organization and auto-synchronization of nanostructures are typical phenomena observed during the growth and heteroatom-doping of carbyne-enriched nanostructured metamaterials by the ion-assisted pulse-plasma deposition method. Accordingly, fine tuning of these processes may be seen as the key step to the predictive designing of carbyne-enriched nano-matrices with improved properties. In particular, we propose an innovative concept, connected with application of the vibrational-acoustic effects and based on universal Cymatics mechanisms. These effects are used to More >

  • Open Access

    ARTICLE

    Cell bioenergetics: Simple logics, complex solution

    LUIS S. MAYORGA*

    BIOCELL, Vol.46, No.10, pp. 2217-2220, 2022, DOI:10.32604/biocell.2022.020806 - 13 June 2022

    Abstract Cells are open systems that exchange energy and molecules with their environment. As any material system, they perform all the complex activities required for homeostasis and reproduction, obeying the thermodynamic laws. This viewpoint will argue that the basic logic governing the energy flux required to preserve cell organization and function is simple: to decrease the activation energy (Ea) of specific processes. Almost none of the possible chemical reactions and energy transformations inside a cell occur at a measurable speed at room or body temperature. Enzymes or other macromolecular structures speed up particular transformations by decreasing More >

  • Open Access

    ARTICLE

    Thermodynamics Inspired Co-operative Self-Organization of Multiple Autonomous Vehicles

    Ayesha Maqbool1,*, Farkhanda Afzal2, Tauseef Rana3, Alina Mirza4

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 653-667, 2021, DOI:10.32604/iasc.2021.017506 - 20 April 2021

    Abstract This paper presents a co-operative, self-organisation method for Multiple Autonomous Vehicles aiming to share surveillance responsibilities. Spatial organization or formation configuration of multiple vehicles/agents’ systems is crucial for a team of agents to achieve their mission objectives. In this paper we present simple yet efficient thermodynamic inspired formation control framework. The proposed method autonomously allocates region of surveillance to each vehicle and also re-adjusts the area of their responsibilities during the mission. It provides framework for heterogeneous UAVs to scatter themselves optimally in order to provide maximum coverage of a given area. The method is… More >

  • Open Access

    ABSTRACT

    Differential Organization of Airway Smooth Muscle Cells on Tubular Surface as A Novel Mechanobiology Mechanism of Airway Tissue Morphogenesis

    Linhong Deng1,*, Yang Jin2, Mingzhi Luo1

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 80-80, 2019, DOI:10.32604/mcb.2019.07370

    Abstract Airway smooth muscle cells (ASMCs) exists within the bronchial airway wall in a form of spirally winding bundles [1]. This pattern emerges early during embryonic development and is involved in airway branching [2], providing the airway appropriate contractile capacity and resistance to circumferential tension in health or causing excessive airway narrowing in disease such as asthma. Despite its importance, the cause of ASMCs self-organization remains largely a mystery. Previously, we have demonstrated in 2D that ASMCs can sense the curvature in their microenvironment and change behaviors in differentiation, orientation and migration accordingly [3]. Here we… More >

  • Open Access

    ARTICLE

    Mesoscopic Biochemical Basis of Isogenetic Inheritance and Canalization: Stochasticity, Nonlinearity, and Emergent Landscape

    Hong Qian, Hao Ge

    Molecular & Cellular Biomechanics, Vol.9, No.1, pp. 1-30, 2012, DOI:10.3970/mcb.2012.009.001

    Abstract Biochemical reaction systems in mesoscopic volume, under sustained environmental chemical gradient(s), can have multiple stochastic attractors. Two distinct mechanisms are known for their origins: (a) Stochastic single-molecule events, such as gene expression, with slow gene on-off dynamics; and (b) nonlinear networks with feedbacks. These two mechanisms yield different volume dependence for the sojourn time of an attractor. As in the classic Arrhenius theory for temperature dependent transition rates, a landscape perspective provides a natural framework for the system's behavior. However, due to the nonequilibrium nature of the open chemical systems, the landscape, and the attractors More >

Displaying 1-10 on page 1 of 7. Per Page