Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16)
  • Open Access

    ARTICLE

    A Super-Resolution Generative Adversarial Network for Remote Sensing Images Based on Improved Residual Module and Attention Mechanism

    Yifan Zhang1, Yong Gan2,*, Mengke Tang1, Xinxin Gan3

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.068880 - 09 December 2025

    Abstract High-resolution remote sensing imagery is essential for critical applications such as precision agriculture, urban management planning, and military reconnaissance. Although significant progress has been made in single-image super-resolution (SISR) using generative adversarial networks (GANs), existing approaches still face challenges in recovering high-frequency details, effectively utilizing features, maintaining structural integrity, and ensuring training stability—particularly when dealing with the complex textures characteristic of remote sensing imagery. To address these limitations, this paper proposes the Improved Residual Module and Attention Mechanism Network (IRMANet), a novel architecture specifically designed for remote sensing image reconstruction. IRMANet builds upon the Super-Resolution… More >

  • Open Access

    ARTICLE

    Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting

    Zitong Zhao1, Zixuan Zhang2, Zhenxing Niu3,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069752 - 10 November 2025

    Abstract Reliable traffic flow prediction is crucial for mitigating urban congestion. This paper proposes Attention-based spatiotemporal Interactive Dynamic Graph Convolutional Network (AIDGCN), a novel architecture integrating Interactive Dynamic Graph Convolution Network (IDGCN) with Temporal Multi-Head Trend-Aware Attention. Its core innovation lies in IDGCN, which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs, and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data. For 15- and 60-min forecasting on METR-LA, AIDGCN achieves MAEs of 0.75% and 0.39%, and RMSEs More >

  • Open Access

    ARTICLE

    A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection

    Hamza Murad Khan1, Shakila Basheer2, Mohammad Tabrez Quasim3, Raja`a Al-Naimi4, Vijaykumar Varadarajan5, Anwar Khan1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069327 - 10 November 2025

    Abstract With the increasing growth of online news, fake electronic news detection has become one of the most important paradigms of modern research. Traditional electronic news detection techniques are generally based on contextual understanding, sequential dependencies, and/or data imbalance. This makes distinction between genuine and fabricated news a challenging task. To address this problem, we propose a novel hybrid architecture, T5-SA-LSTM, which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attention-enhanced (SA) Long Short-Term Memory (LSTM). The LSTM is trained using the Adam optimizer, which provides faster and more stable convergence compared… More >

  • Open Access

    REVIEW

    Natural Language Processing with Transformer-Based Models: A Meta-Analysis

    Charles Munyao*, John Ndia

    Journal on Artificial Intelligence, Vol.7, pp. 329-346, 2025, DOI:10.32604/jai.2025.069226 - 22 September 2025

    Abstract The natural language processing (NLP) domain has witnessed significant advancements with the emergence of transformer-based models, which have reshaped the text understanding and generation landscape. While their capabilities are well recognized, there remains a limited systematic synthesis of how these models perform across tasks, scale efficiently, adapt to domains, and address ethical challenges. Therefore, the aim of this paper was to analyze the performance of transformer-based models across various NLP tasks, their scalability, domain adaptation, and the ethical implications of such models. This meta-analysis paper synthesizes findings from 25 peer-reviewed studies on NLP transformer-based models,… More >

  • Open Access

    ARTICLE

    BES-Net: A Complex Road Vehicle Detection Algorithm Based on Multi-Head Self-Attention Mechanism

    Heng Wang1, Jian-Hua Qin2,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1037-1052, 2025, DOI:10.32604/cmc.2025.067650 - 29 August 2025

    Abstract Vehicle detection is a crucial aspect of intelligent transportation systems (ITS) and autonomous driving technologies. The complexity and diversity of real-world road environments, coupled with traffic congestion, pose significant challenges to the accuracy and real-time performance of vehicle detection models. To address these challenges, this paper introduces a fast and accurate vehicle detection algorithm named BES-Net. Firstly, the BoTNet module is integrated into the backbone network to bolster the model’s long-distance dependency, address the complexities and diversity of road environments, and accelerate the detection speed of the BES-Net network. Secondly, to accommodate the varying sizes… More >

  • Open Access

    ARTICLE

    Multi-Scale Dilated Attention-Based Transformer Network for Image Inpainting

    Jinrong Li1,2, Chunhua Wei2, Lei Liang2,3,*, Zhisheng Gao1,*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3259-3280, 2025, DOI:10.32604/cmc.2025.063547 - 03 July 2025

    Abstract The Pressure Sensitive Paint Technique (PSP) has gained attention in recent years because of its significant benefits in measuring surface pressure on wind tunnel models. However, in the post-processing process of PSP images, issues such as pressure taps, paint peeling, and contamination can lead to the loss of pressure data on the image, which seriously affects the subsequent calculation and analysis of pressure distribution. Therefore, image inpainting is particularly important in the post-processing process of PSP images. Deep learning offers new methods for PSP image inpainting, but some basic characteristics of convolutional neural networks (CNNs)… More >

  • Open Access

    ARTICLE

    TransSSA: Invariant Cue Perceptual Feature Focused Learning for Dynamic Fruit Target Detection

    Jianyin Tang, Zhenglin Yu*, Changshun Shao

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2829-2850, 2025, DOI:10.32604/cmc.2025.063287 - 16 April 2025

    Abstract In the field of automated fruit harvesting, precise and efficient fruit target recognition and localization play a pivotal role in enhancing the efficiency of harvesting robots. However, this domain faces two core challenges: firstly, the dynamic nature of the automatic picking process requires fruit target detection algorithms to adapt to multi-view characteristics, ensuring effective recognition of the same fruit from different perspectives. Secondly, fruits in natural environments often suffer from interference factors such as overlapping, occlusion, and illumination fluctuations, which increase the difficulty of image capture and recognition. To address these challenges, this study conducted… More >

  • Open Access

    ARTICLE

    A Transformer Based on Feedback Attention Mechanism for Diagnosis of Coronary Heart Disease Using Echocardiographic Images

    Chunlai Du1,#, Xin Gu1,#, Yanhui Guo2,*, Siqi Guo3, Ziwei Pang3, Yi Du3, Guoqing Du3,*

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3435-3450, 2025, DOI:10.32604/cmc.2025.060212 - 16 April 2025

    Abstract Coronary artery disease is a highly lethal cardiovascular condition, making early diagnosis crucial for patients. Echocardiograph is employed to identify coronary heart disease (CHD). However, due to issues such as fuzzy object boundaries, complex tissue structures, and motion artifacts in ultrasound images, it is challenging to detect CHD accurately. This paper proposes an improved Transformer model based on the Feedback Self-Attention Mechanism (FSAM) for classification of ultrasound images. The model enhances attention weights, making it easier to capture complex features. Experimental results show that the proposed method achieves high levels of accuracy, recall, precision, F1 More >

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223 - 20 June 2024

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

Displaying 1-10 on page 1 of 16. Per Page