Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024

    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More > Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

  • Open Access

    ARTICLE

    Classification of Electroencephalogram Signals Using LSTM and SVM Based on Fast Walsh-Hadamard Transform

    Saeed Mohsen1,2,*, Sherif S. M. Ghoneim3, Mohammed S. Alzaidi3, Abdullah Alzahrani3, Ashraf Mohamed Ali Hassan4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5271-5286, 2023, DOI:10.32604/cmc.2023.038758 - 29 April 2023

    Abstract Classification of electroencephalogram (EEG) signals for humans can be achieved via artificial intelligence (AI) techniques. Especially, the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions. From this perspective, an automated AI technique with a digital processing method can be used to improve these signals. This paper proposes two classifiers: long short-term memory (LSTM) and support vector machine (SVM) for the classification of seizure and non-seizure EEG signals. These classifiers are applied to a public dataset, namely the University of Bonn, which consists of 2 classes –seizure and… More >

  • Open Access

    ARTICLE

    Feature Selection with Deep Belief Network for Epileptic Seizure Detection on EEG Signals

    Srikanth Cherukuvada, R. Kayalvizhi*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4101-4118, 2023, DOI:10.32604/cmc.2023.036207 - 31 March 2023

    Abstract The term Epilepsy refers to a most commonly occurring brain disorder after a migraine. Early identification of incoming seizures significantly impacts the lives of people with Epilepsy. Automated detection of epileptic seizures (ES) has dramatically improved the life quality of the patients. Recent Electroencephalogram (EEG) related seizure detection mechanisms encountered several difficulties in real-time. The EEGs are the non-stationary signal, and seizure patterns would change with patients and recording sessions. Further, EEG data were disposed to wide noise varieties that adversely moved the recognition accuracy of ESs. Artificial intelligence (AI) methods in the domain of… More >

  • Open Access

    ARTICLE

    Epileptic Seizures Diagnosis Using Amalgamated Extremely Focused EEG Signals and Brain MRI

    Farah Mohammad*, Saad Al-Ahmadi

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 623-639, 2023, DOI:10.32604/cmc.2023.032552 - 22 September 2022

    Abstract

    There exists various neurological disorder based diseases like tumor, sleep disorder, headache, dementia and Epilepsy. Among these, epilepsy is the most common neurological illness in humans, comparable to stroke. Epilepsy is a severe chronic neurological illness that can be discovered through analysis of the signals generated by brain neurons and brain Magnetic resonance imaging (MRI). Neurons are intricately coupled in order to communicate and generate signals from human organs. Due to the complex nature of electroencephalogram (EEG) signals and MRI’s the epileptic seizures detection and brain related problems diagnosis becomes a challenging task. Computer based

    More >

  • Open Access

    ARTICLE

    Automated Machine Learning for Epileptic Seizure Detection Based on EEG Signals

    Jian Liu1, Yipeng Du1, Xiang Wang1,*, Wuguang Yue2, Jim Feng3

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1995-2011, 2022, DOI:10.32604/cmc.2022.029073 - 18 May 2022

    Abstract Epilepsy is a common neurological disease and severely affects the daily life of patients. The automatic detection and diagnosis system of epilepsy based on electroencephalogram (EEG) is of great significance to help patients with epilepsy return to normal life. With the development of deep learning technology and the increase in the amount of EEG data, the performance of deep learning based automatic detection algorithm for epilepsy EEG has gradually surpassed the traditional hand-crafted approaches. However, the neural architecture design for epilepsy EEG analysis is time-consuming and laborious, and the designed structure is difficult to adapt… More >

  • Open Access

    ARTICLE

    Evolutionary Algorithsm with Machine Learning Based Epileptic Seizure Detection Model

    Manar Ahmed Hamza1,*, Noha Negm2, Shaha Al-Otaibi3, Amel A. Alhussan4, Mesfer Al Duhayyim5, Fuad Ali Mohammed Al-Yarimi2, Mohammed Rizwanullah1, Ishfaq Yaseen1

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4541-4555, 2022, DOI:10.32604/cmc.2022.027048 - 21 April 2022

    Abstract Machine learning (ML) becomes a familiar topic among decision makers in several domains, particularly healthcare. Effective design of ML models assists to detect and classify the occurrence of diseases using healthcare data. Besides, the parameter tuning of the ML models is also essential to accomplish effective classification results. This article develops a novel red colobuses monkey optimization with kernel extreme learning machine (RCMO-KELM) technique for epileptic seizure detection and classification. The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signals. In addition, the min-max normalization approach is More >

  • Open Access

    ARTICLE

    Overhauled Approach to Effectuate the Amelioration in EEG Analysis

    S. Beatrice*, Janaki Meena

    Intelligent Automation & Soft Computing, Vol.33, No.1, pp. 331-347, 2022, DOI:10.32604/iasc.2022.023666 - 05 January 2022

    Abstract Discovering the information about several disorders prevailing in brain and neurology is by no means a new scientific technique. A neurological disorder of any human being can be analyzed using EEG (Electroencephalography) signal from the electrode’s output. Epilepsy (spontaneous recurrent seizure) detection is usually carried out by the physicians using a visual scanning of the signals produced by EEG, which is onerous and may be inaccurate. EEG signal is often used to determine epilepsy, for its merits, such as non-invasive, portable, and economical, can exhibit superior temporal tenacity. This paper surveys the existing artifact removal… More >

  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348 - 11 October 2021

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals.… More >

Displaying 1-10 on page 1 of 8. Per Page