Manar Ahmed Hamza1,*, Noha Negm2, Shaha Al-Otaibi3, Amel A. Alhussan4, Mesfer Al Duhayyim5, Fuad Ali Mohammed Al-Yarimi2, Mohammed Rizwanullah1, Ishfaq Yaseen1
CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4541-4555, 2022, DOI:10.32604/cmc.2022.027048
- 21 April 2022
Abstract Machine learning (ML) becomes a familiar topic among decision makers in several domains, particularly healthcare. Effective design of ML models assists to detect and classify the occurrence of diseases using healthcare data. Besides, the parameter tuning of the ML models is also essential to accomplish effective classification results. This article develops a novel red colobuses monkey optimization with kernel extreme learning machine (RCMO-KELM) technique for epileptic seizure detection and classification. The proposed RCMO-KELM technique initially extracts the chaotic, time, and frequency domain features in the actual EEG signals. In addition, the min-max normalization approach is More >