Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Dynamic-Response Analysis of the Branch System of a Utility Tunnel Subjected to Near-Fault and Far-Field Ground Motions in Different Input Mechanisms

    Yuhang Jin1,2, Endong Guo1,2,*, Houli Wu1,2, peilei Yan1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.1, pp. 167-186, 2022, DOI:10.32604/cmes.2022.018113 - 29 November 2021

    Abstract There are few studies on the dynamic-response mechanism of near-fault and far-field ground motions for large underground structures, especially for the branch joint of a utility tunnel (UT) and its internal pipeline. Based on the theory of a 3D viscous-spring artificial boundary, this paper deduced the equivalent nodal force when a P wave and an SV wave were vertically incident at the same time and transformed the ground motion into an equivalent nodal force using a self-developed MATLAB program, which was applied to an ABAQUS finite element model. Based on near-fault and far-field ground motions… More >

  • Open Access

    ARTICLE

    Probabilistic Performance-Based Optimum Seismic Design Framework: Illustration and Validation

    Yong Li1,*, Joel P. Conte2, Philip E. Gill3

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.3, pp. 517-543, 2019, DOI:10.32604/cmes.2019.06269

    Abstract In the field of earthquake engineering, the advent of the performance-based design philosophy, together with the highly uncertain nature of earthquake ground excitations to structures, has brought probabilistic performance-based design to the forefront of seismic design. In order to design structures that explicitly satisfy probabilistic performance criteria, a probabilistic performance-based optimum seismic design (PPBOSD) framework is proposed in this paper by extending the state-of-the-art performance-based earthquake engineering (PBEE) methodology. PBEE is traditionally used for risk evaluation of existing or newly designed structural systems, thus referred to herein as forward PBEE analysis. In contrast, its use… More >

  • Open Access

    ARTICLE

    Evaluation of Seismic Design Values in the Taiwan Building Code by Using Artificial Neural Network

    Tienfuan Kerh1,2, J.S. Lai1, D. Gunaratnam2, R. Saunders2

    CMES-Computer Modeling in Engineering & Sciences, Vol.26, No.1, pp. 1-12, 2008, DOI:10.3970/cmes.2008.026.001

    Abstract Taiwan frequently suffers from strong ground motion, and the current building code is essentially based on two seismic zones, A and B. The design value of horizontal acceleration for zone A is 0.33g, and the value for zone B is 0.23g. To check the suitability of these values, a series of actual earthquake records are considered for evaluating peak ground acceleration (PGA) for each of the zones by using neural network models. The input parameters are magnitude, epicenter distance, and focal depth for each of the checking stations, and the peak ground acceleration is calculated… More >

Displaying 1-10 on page 1 of 3. Per Page