Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs

    Lijun Mu, Xiaojia Xue, Jie Bai*, Xiaoyan Li, Xueliang Han

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1365-1379, 2024, DOI:10.32604/fdmp.2024.049013

    Abstract Following large-scale volume fracturing in shale oil reservoirs, well shut-in measures are generally employed. Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity. Unlike conventional reservoirs, shale oil reservoirs exhibit characteristics such as low porosity, low permeability, and rich content of organic matter and clay minerals. Notably, the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant. The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous, and the… More >

  • Open Access

    ARTICLE

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

    Huiyan Zhao1, Xuezhong Chen1, Zhijian Hu2,*, Man Chen1, Bo Xiong3, Jianying Yang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1313-1330, 2024, DOI:10.32604/fdmp.2024.048840

    Abstract Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis, a model is developed to predict the related well production rate. This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales, as well as the flow characteristics in different types of thin layers (tight sandstone gas, shale gas, and coalbed gas). Moreover, a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir. A… More > Graphic Abstract

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

  • Open Access

    ARTICLE

    Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

    Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

    Energy Engineering, Vol.120, No.12, pp. 2933-2949, 2023, DOI:10.32604/ee.2023.041580

    Abstract This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is… More >

  • Open Access

    ARTICLE

    Study of the Seepage Mechanism in Thick Heterogeneous Gas Reservoirs

    Xin Huang1,*, Yunpeng Jiang1, Daowu Huang1, Xianke He1, Xianguo Zhang2, Ping Guo3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1679-1691, 2023, DOI:10.32604/fdmp.2023.025312

    Abstract

    The seepage mechanism plays a crucial role in low-permeability gas reservoirs. Compared with conventional gas reservoirs, low-permeability sandstone gas reservoirs are characterized by low porosity, low permeability, strong heterogeneity, and high water saturation. Moreover, their percolation mechanisms are more complex. The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressure-depletion conditions (from the Xihu Depression in the East China Sea Basin). It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity. The

    More >

  • Open Access

    ARTICLE

    An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams

    Shaowei Wang1,2, Cong Xu1, Hao Gu3,*, Pinghua Zhu1, Hui Liu1, Bo Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.1, pp. 97-117, 2022, DOI:10.32604/cmes.2022.018721

    Abstract Many concrete dams seriously suffer from long-term seepage dissolution, and the induced mechanical property deterioration of concrete may significantly affect the structural performance, especially the seismic safety. An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams. To connect laboratory test with numerical simulation, dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index, a deterioration model is established to predict the mechanical property of leached concrete in the first step. A coupled seepage-calcium dissolution-migration model containing… More >

  • Open Access

    ARTICLE

    Simulation of the Pressure-Sensitive Seepage Fracture Network in Oil Reservoirs with Multi-Group Fractures

    Yueli Feng1,2, Yuetian Liu1,2,*, Jian Chen1,2, Xiaolong Mao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 395-415, 2022, DOI:10.32604/fdmp.2022.018141

    Abstract Stress sensitivity is a very important index to understand the seepage characteristics of a reservoir. In this study, dedicated experiments and theoretical arguments based on the visualization of porous media are used to assess the effects of the fracture angle, spacing, and relevant elastic parameters on the principal value of the permeability tensor. The fracture apertures at different angles show different change rates, which influence the relative permeability for different sets of fractures. Furthermore, under the same pressure condition, the fractures with different angles show different degrees of deformation so that the principal value direction More >

  • Open Access

    ARTICLE

    Experimental Study on Seepage Characteristics of a Soil-Rock Mixture in a Fault Zone

    Pengfei Wang1,2, Xiangyang Zhang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 271-283, 2022, DOI:10.32604/fdmp.2022.017882

    Abstract A mixture of fault gouge and rubble taken out from a fault zone is used to prepare a S-RM (Soil-Rock Mixture) sample with rock block proportions of 20%, 30%, 40%, 50%, 60% and 70%, respectively. A GDS triaxial test system is used accordingly to measure the seepage characteristics of such samples under different loading and unloading confining pressures in order to determine the variation law of the permeability coefficient. The test results show that: (1) The permeability coefficient of the S-RM samples decreases as the pressure increases, and the decrease rate of this coefficient in… More >

  • Open Access

    ARTICLE

    Application of the Navier-Stokes Equations to the Analysis of the Landslide Sediments Permeability and Related Seepage Effects

    Meng Song1,*, Yuncai Liu2, Zhen Wang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 313-327, 2022, DOI:10.32604/fdmp.2022.017737

    Abstract The purpose of the study is to implement a new model based on the Navier-Stokes equations for the characterization of landslide sediments interacting with a moving fluid. The model is implemented by combining Hypermesh, the LS-DYNA software and MATLAB. The results show that the main factors affecting the permeability of landslide sediments are the genetic mechanism, the structure and composition of materials, material lithology, and stress. The characteristics and mechanism of permeability changes are determined by adjusting the water levels of fluids. It is found that the permeability of landslide sediments increases at the front More >

  • Open Access

    ARTICLE

    Analysis of the Microstructure and Macroscopic Fluid-Dynamics Behavior of Soft Soil after Seepage Consolidation

    Fang Jin*, Dong Zhou, Liying Zhu

    FDMP-Fluid Dynamics & Materials Processing, Vol.18, No.2, pp. 285-302, 2022, DOI:10.32604/fdmp.2022.017593

    Abstract The purpose is to study the microstructure and macroscopic fluid-dynamic behavior of soft soil after it has been subjected to a seepage consolidation procedure. First, the microscopic pore structure of soft clay is quantitatively studied by a scanning electron microscope technique. Second, the average contact area rate of soil particles is obtained employing statistical analysis applied to microscopic images of soft soil, and the macroscopic porosity of soft clay is determined through an indoor geotechnical test. Finally, mathematical relationships are introduced by fitting the results of the test. The results show that the unmodified empirical More >

  • Open Access

    ARTICLE

    Uncertainty Analysis of Seepage-Induced Consolidation in a Fractured Porous Medium

    Lingai Guo1, Marwan Fahs2, Hussein Hoteit3, Rui Gao1,*, Qian Shao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 279-297, 2021, DOI:10.32604/cmes.2021.016619

    Abstract Numerical modeling of seepage-induced consolidation process usually encounters significant uncertainty in the properties of geotechnical materials. Assessing the effect of uncertain parameters on the performance variability of the seepage consolidation model is of critical importance to the simulation and tests of this process. To this end, the uncertainty and sensitivity analyses are performed on a seepage consolidation model in a fractured porous medium using the Bayesian sparse polynomial chaos expansion (SPCE) method. Five uncertain parameters including Young’s modulus, Poisson’s ratio, and the permeability of the porous matrix, the permeability within the fracture, and Biot’s constant… More >

Displaying 1-10 on page 1 of 24. Per Page