Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Seasonal Short-Term Load Forecasting for Power Systems Based on Modal Decomposition and Feature-Fusion Multi-Algorithm Hybrid Neural Network Model

    Jiachang Liu1,*, Zhengwei Huang2, Junfeng Xiang1, Lu Liu1, Manlin Hu1

    Energy Engineering, Vol.121, No.11, pp. 3461-3486, 2024, DOI:10.32604/ee.2024.054514 - 21 October 2024

    Abstract To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance, this paper proposes a seasonal short-term load combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model. Specifically, the characteristics of load components are analyzed for different seasons, and the corresponding models are established. First, the improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) method is employed to decompose the system load for all four seasons, and the new sequence is obtained through reconstruction based on the… More >

  • Open Access

    ARTICLE

    Seasonal Characteristics Analysis and Uncertainty Measurement for Wind Speed Time Series

    Xing Deng1,2, Haijian Shao1,2,*, Xia Wang3,4

    Energy Engineering, Vol.117, No.5, pp. 289-299, 2020, DOI:10.32604/EE.2020.011126 - 07 September 2020

    Abstract Wind speed’s distribution nature such as uncertainty and randomness imposes a challenge in high accuracy forecasting. Based on the energy distribution about the extracted amplitude and associated frequency, the uncertainty measurement is processed through Rényi entropy analysis method with time-frequency nature. Nonparametric statistical method is used to test the randomness of wind speed, more precisely, whether or not the wind speed time series is independent and identically distribution (i.i.d) based on the output probability. Seasonal characteristics of wind speed are analyzed based on self-similarity in periodogram under scales range generated by wavelet transformation to reasonably More >

  • Open Access

    ARTICLE

    AdaBoosting Neural Network for Short-Term Wind Speed Forecasting Based on Seasonal Characteristics Analysis and Lag Space Estimation

    Haijian Shao1, 2, Xing Deng1, 2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 277-293, 2018, DOI:10.3970/cmes.2018.114.277

    Abstract High accurary in wind speed forcasting remains hard to achieve due to wind’s random distribution nature and its seasonal characteristics. Randomness, intermittent and nonstationary usually cause the portion problem of the wind speed forecasting. Seasonal characteristics of wind speed means that its feature distribution is inconsistent. This typically results that the persistence of excitation for modeling can not be guaranteed, and may severely reduce the possibilities of high precise forecasting model. In this paper, we proposed two effective solutions to solve the problems caused by the randomness and seasonal characteristics of the wind speed. (1)… More >

Displaying 1-10 on page 1 of 3. Per Page