Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size

    Ala Kana, Imtiaz Ahmad*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3443-3464, 2023, DOI:10.32604/cmc.2023.040775 - 08 October 2023

    Abstract A newly proposed competent population-based optimization algorithm called RUN, which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism, has gained wider interest in solving optimization problems. However, in high-dimensional problems, the search capabilities, convergence speed, and runtime of RUN deteriorate. This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN. Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms. Unlike the original RUN where population size is fixed throughout… More >

  • Open Access

    ARTICLE

    SSABA: Search Step Adjustment Based Algorithm

    Fatemeh Ahmadi Zeidabadi1, Ali Dehghani2, Mohammad Dehghani3, Zeinab Montazeri4, Štěpán Hubálovský5, Pavel Trojovský3,*, Gaurav Dhiman6

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 4237-4256, 2022, DOI:10.32604/cmc.2022.023682 - 14 January 2022

    Abstract Finding the suitable solution to optimization problems is a fundamental challenge in various sciences. Optimization algorithms are one of the effective stochastic methods in solving optimization problems. In this paper, a new stochastic optimization algorithm called Search Step Adjustment Based Algorithm (SSABA) is presented to provide quasi-optimal solutions to various optimization problems. In the initial iterations of the algorithm, the step index is set to the highest value for a comprehensive search of the search space. Then, with increasing repetitions in order to focus the search of the algorithm in achieving the optimal solution closer… More >

Displaying 1-10 on page 1 of 2. Per Page