Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (651)
  • Open Access

    ARTICLE

    Evolutionary Variational YOLOv8 Network for Fault Detection in Wind Turbines

    Hongjiang Wang1, Qingze Shen2,*, Qin Dai1, Yingcai Gao2, Jing Gao2, Tian Zhang3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.051757

    Abstract Deep learning has emerged in many practical applications, such as image classification, fault diagnosis, and object detection. More recently, convolutional neural networks (CNNs), representative models of deep learning, have been used to solve fault detection. However, the current design of CNNs for fault detection of wind turbine blades is highly dependent on domain knowledge and requires a large amount of trial and error. For this reason, an evolutionary YOLOv8 network has been developed to automatically find the network architecture for wind turbine blade-based fault detection. YOLOv8 is a CNN-backed object detection model. Specifically, to reduce… More >

  • Open Access

    ARTICLE

    Wild Gibbon Optimization Algorithm

    Jia Guo1,2,4,6, Jin Wang2, Ke Yan3, Qiankun Zuo1,2,4,*, Ruiheng Li1,2,4, Zhou He1,2,4, Dong Wang5, Yuji Sato6

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1203-1233, 2024, DOI:10.32604/cmc.2024.051336

    Abstract Complex optimization problems hold broad significance across numerous fields and applications. However, as the dimensionality of such problems increases, issues like the curse of dimensionality and local optima trapping also arise. To address these challenges, this paper proposes a novel Wild Gibbon Optimization Algorithm (WGOA) based on an analysis of wild gibbon population behavior. WGOA comprises two strategies: community search and community competition. The community search strategy facilitates information exchange between two gibbon families, generating multiple candidate solutions to enhance algorithm diversity. Meanwhile, the community competition strategy reselects leaders for the population after each iteration, More >

  • Open Access

    ARTICLE

    Lithium-Ion Battery Pack Based on Fuzzy Logic Control Research on Multi-Layer Equilibrium Circuits

    Tiezhou Wu, Yukan Zhang*

    Energy Engineering, Vol.121, No.8, pp. 2231-2255, 2024, DOI:10.32604/ee.2024.049883

    Abstract In order to solve the problem of inconsistent energy in the charging and discharging cycles of lithium-ion battery packs, a new multilayer equilibrium topology is designed in this paper. The structure adopts a hierarchical structure design, which includes intra-group equilibrium, primary inter-group equilibrium and secondary inter-group equilibrium. This structure greatly increases the number of equilibrium paths for lithium-ion batteries, thus shortening the time required for equilibrium, and improving the overall efficiency. In terms of control strategy, fuzzy logic control (FLC) is chosen to control the size of the equilibrium current during the equilibrium process. We… More >

  • Open Access

    ARTICLE

    Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem

    Sana Jawarneh*

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 511-525, 2024, DOI:10.32604/iasc.2024.047126

    Abstract High-dimensional datasets present significant challenges for classification tasks. Dimensionality reduction, a crucial aspect of data preprocessing, has gained substantial attention due to its ability to improve classification performance. However, identifying the optimal features within high-dimensional datasets remains a computationally demanding task, necessitating the use of efficient algorithms. This paper introduces the Arithmetic Optimization Algorithm (AOA), a novel approach for finding the optimal feature subset. AOA is specifically modified to address feature selection problems based on a transfer function. Additionally, two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision, slow More >

  • Open Access

    ARTICLE

    Impact Performance Research of Re-Entrant Octagonal Negative Poisson’s Ratio Honeycomb with Gradient Design

    Yiyuan Li1, Yongjing Li1,2, Shilin Yan1,2,*, Pin Wen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3105-3119, 2024, DOI:10.32604/cmes.2024.051375

    Abstract Based on the traditional re-entrant honeycomb, a novel re-entrant octagon honeycomb (ROH) is proposed. The deformation mode of the honeycomb under quasi-static compression is analyzed by numerical simulation, and the results are in good agreement with the experimental ones. The deformation modes, mechanical properties, and energy absorption characteristics of ROH along the impact and perpendicular directions gradient design are investigated under different velocities. The results indicated that the deformation mode of ROH is affected by gradient design along the direction of impact and impact speed. In addition, gradient design along the direction of impact can… More >

  • Open Access

    ARTICLE

    Research on Alliance Decision of Dual-Channel Remanufacturing Supply Chain Considering Bidirectional Free-Riding and Cost-Sharing

    Lina Dong, Yeming Dai*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2913-2956, 2024, DOI:10.32604/cmes.2024.049214

    Abstract This study delves into the formation dynamics of alliances within a closed-loop supply chain (CLSC) that encompasses a manufacturer, a retailer, and an e-commerce platform. It leverages Stackelberg game for this exploration, contrasting the equilibrium outcomes of a non-alliance model with those of three differentiated alliance models. The non-alliance model acts as a crucial benchmark, enabling the evaluation of the motivations for various supply chain entities to engage in alliance formations. Our analysis is centered on identifying the most effective alliance strategies and establishing a coordination within these partnerships. We thoroughly investigate the consequences of… More >

  • Open Access

    REVIEW

    Research Progress on Plant Anti-Freeze Proteins

    Zhengyang Zhang#, Weixue Liu#, Yinran Huang*, Ping Li*

    Phyton-International Journal of Experimental Botany, Vol.93, No.6, pp. 1263-1274, 2024, DOI:10.32604/phyton.2024.050755

    Abstract Plant antifreeze proteins (AFPs) are special proteins that can protect plant cells from ice crystal damage in low-temperature environments, and they play a crucial role in the process of plants adapting to cold environments. Proteins with these characteristics have been found in fish living in cold regions, as well as many plants and insects. Although research on plant AFPs started relatively late, their application prospects are broad, leading to the attention of many researchers to the isolation, cloning, and genetic improvement of plant AFP genes. Studies have found that the distribution of AFPs in different species… More >

  • Open Access

    ARTICLE

    Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification

    Yuting Zhou1, Xuemei Yang1, Junping Yin2,3,4,*, Shiqi Liu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5313-5333, 2024, DOI:10.32604/cmc.2024.052060

    Abstract Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines global features and local features. The network framework consists of three parallel layers: The global feature extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local feature… More >

  • Open Access

    ARTICLE

    Vector Dominance with Threshold Searchable Encryption (VDTSE) for the Internet of Things

    Jingjing Nie1,*, Zhenhua Chen2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4763-4779, 2024, DOI:10.32604/cmc.2024.051181

    Abstract The Internet of Medical Things (IoMT) is an application of the Internet of Things (IoT) in the medical field. It is a cutting-edge technique that connects medical sensors and their applications to healthcare systems, which is essential in smart healthcare. However, Personal Health Records (PHRs) are normally kept in public cloud servers controlled by IoMT service providers, so privacy and security incidents may be frequent. Fortunately, Searchable Encryption (SE), which can be used to execute queries on encrypted data, can address the issue above. Nevertheless, most existing SE schemes cannot solve the vector dominance threshold… More >

  • Open Access

    ARTICLE

    An Opposition-Based Learning-Based Search Mechanism for Flying Foxes Optimization Algorithm

    Chen Zhang1, Liming Liu1, Yufei Yang1, Yu Sun1, Jiaxu Ning2, Yu Zhang3, Changsheng Zhang1,4,*, Ying Guo4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5201-5223, 2024, DOI:10.32604/cmc.2024.050863

    Abstract The flying foxes optimization (FFO) algorithm, as a newly introduced metaheuristic algorithm, is inspired by the survival tactics of flying foxes in heat wave environments. FFO preferentially selects the best-performing individuals. This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area. To address this issue, the paper introduces an opposition-based learning-based search mechanism for FFO algorithm (IFFO). Firstly, this paper introduces niching techniques to improve the survival list method, which not only focuses on the adaptability of individuals but also considers the population’s crowding degree More >

Displaying 1-10 on page 1 of 651. Per Page