Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (246)
  • Open Access

    ARTICLE

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

    Heping Qi, Wenyao Sun*, Yi Zhao, Xiaoyi Qian, Xingyu Jiang

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069603 - 27 December 2025

    Abstract Virtual power plant (VPP) integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions, promote the consumption of renewable energy, and improve economic efficiency. In this paper, aiming at the uncertainty of distributed wind power and photovoltaic output, considering the coupling relationship between power, carbon trading, and green card market, the optimal operation model and bidding scheme of VPP in spot market, carbon trading market, and green card market are established. On this basis, through the Shapley value and independent risk contribution theory in cooperative game theory, the quantitative… More > Graphic Abstract

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

  • Open Access

    ARTICLE

    A Virtual Probe Deployment Method Based on User Behavioral Feature Analysis

    Bing Zhang, Wenqi Shi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-19, 2026, DOI:10.32604/cmc.2025.067470 - 09 December 2025

    Abstract To address the challenge of low survival rates and limited data collection efficiency in current virtual probe deployments, which results from anomaly detection mechanisms in location-based service (LBS) applications, this paper proposes a novel virtual probe deployment method based on user behavioral feature analysis. The core idea is to circumvent LBS anomaly detection by mimicking real-user behavior patterns. First, we design an automated data extraction algorithm that recognizes graphical user interface (GUI) elements to collect spatio-temporal behavior data. Then, by analyzing the automatically collected user data, we identify normal users’ spatio-temporal patterns and extract their… More >

  • Open Access

    ARTICLE

    P4LoF: Scheduling Loop-Free Multi-Flow Updates in Programmable Networks

    Jiqiang Xia1, Qi Zhan1, Le Tian1,2,3,*, Yuxiang Hu1,2,3, Jianhua Peng4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069533 - 10 November 2025

    Abstract The rapid growth of distributed data-centric applications and AI workloads increases demand for low-latency, high-throughput communication, necessitating frequent and flexible updates to network routing configurations. However, maintaining consistent forwarding states during these updates is challenging, particularly when rerouting multiple flows simultaneously. Existing approaches pay little attention to multi-flow update, where improper update sequences across data plane nodes may construct deadlock dependencies. Moreover, these methods typically involve excessive control-data plane interactions, incurring significant resource overhead and performance degradation. This paper presents P4LoF, an efficient loop-free update approach that enables the controller to reroute multiple flows through More >

  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    High-Dimensional Multi-Objective Computation Offloading for MEC in Serial Isomerism Tasks via Flexible Optimization Framework

    Zheng Yao*, Puqing Chang

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-18, 2026, DOI:10.32604/cmc.2025.068248 - 10 November 2025

    Abstract As Internet of Things (IoT) applications expand, Mobile Edge Computing (MEC) has emerged as a promising architecture to overcome the real-time processing limitations of mobile devices. Edge-side computation offloading plays a pivotal role in MEC performance but remains challenging due to complex task topologies, conflicting objectives, and limited resources. This paper addresses high-dimensional multi-objective offloading for serial heterogeneous tasks in MEC. We jointly consider task heterogeneity, high-dimensional objectives, and flexible resource scheduling, modeling the problem as a Many-objective optimization. To solve it, we propose a flexible framework integrating an improved cooperative co-evolutionary algorithm based on More >

  • Open Access

    ARTICLE

    State-Space Reduction Techniques Exploiting Specific Constraints for Quantum Search Initialization, Application to an Outage Planning Problem

    Rodolphe Griset1,#,*, Ioannis Lavdas2,§, Jiří Guth Jarkovský3

    Journal of Quantum Computing, Vol.7, pp. 81-105, 2025, DOI:10.32604/jqc.2025.066064 - 08 December 2025

    Abstract Quantum search has emerged as one of the most promising fields in quantum computing. State-of-the-art quantum search algorithms enable the search for specific elements in a distribution by monotonically increasing the density of these elements relative to the rest of the distribution. These kinds of algorithms demonstrate a theoretical quadratic speed-up on the number of queries compared to classical search algorithms in unstructured spaces. Unfortunately, the major part of the existing literature applies quantum search to problems whose size grows exponentially with the input size without exploiting any specific problem structure, rendering this kind of… More >

  • Open Access

    ARTICLE

    Optimization Scheduling of Hydrogen-Coupled Electro-Heat-Gas Integrated Energy System Based on Generative Adversarial Imitation Learning

    Baiyue Song1, Chenxi Zhang2, Wei Zhang2,*, Leiyu Wan2

    Energy Engineering, Vol.122, No.12, pp. 4919-4945, 2025, DOI:10.32604/ee.2025.068971 - 27 November 2025

    Abstract Hydrogen energy is a crucial support for China’s low-carbon energy transition. With the large-scale integration of renewable energy, the combination of hydrogen and integrated energy systems has become one of the most promising directions of development. This paper proposes an optimized scheduling model for a hydrogen-coupled electro-heat-gas integrated energy system (HCEHG-IES) using generative adversarial imitation learning (GAIL). The model aims to enhance renewable-energy absorption, reduce carbon emissions, and improve grid-regulation flexibility. First, the optimal scheduling problem of HCEHG-IES under uncertainty is modeled as a Markov decision process (MDP). To overcome the limitations of conventional deep… More >

  • Open Access

    ARTICLE

    Priority-Based Scheduling and Orchestration in Edge-Cloud Computing: A Deep Reinforcement Learning-Enhanced Concurrency Control Approach

    Mohammad A Al Khaldy1, Ahmad Nabot2, Ahmad Al-Qerem3,*, Mohammad Alauthman4, Amina Salhi5,*, Suhaila Abuowaida6, Naceur Chihaoui7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 673-697, 2025, DOI:10.32604/cmes.2025.070004 - 30 October 2025

    Abstract The exponential growth of Internet of Things (IoT) devices has created unprecedented challenges in data processing and resource management for time-critical applications. Traditional cloud computing paradigms cannot meet the stringent latency requirements of modern IoT systems, while pure edge computing faces resource constraints that limit processing capabilities. This paper addresses these challenges by proposing a novel Deep Reinforcement Learning (DRL)-enhanced priority-based scheduling framework for hybrid edge-cloud computing environments. Our approach integrates adaptive priority assignment with a two-level concurrency control protocol that ensures both optimal performance and data consistency. The framework introduces three key innovations: (1)… More >

  • Open Access

    ARTICLE

    Coordinated Scheduling of Electric-Hydrogen-Heat Trigeneration System for Low-Carbon Building Based on Improved Reinforcement Learning

    Jiayun Ding, Bin Chen*, Yutong Lei, Wei Zhang

    Energy Engineering, Vol.122, No.11, pp. 4561-4577, 2025, DOI:10.32604/ee.2025.067574 - 27 October 2025

    Abstract In the field of low-carbon building systems, the combination of renewable energy and hydrogen energy systems is gradually gaining prominence. However, the uncertainty of supply and demand and the multi-energy flow coupling characteristics of this system pose challenges for its optimized scheduling. In light of this, this study focuses on electro-thermal-hydrogen trigeneration systems, first modelling the system’s scheduling optimization problem as a Markov decision process, thereby transforming it into a sequential decision problem. Based on this, this paper proposes a reinforcement learning algorithm based on deep deterministic policy gradient improvement, aiming to minimize system operating… More >

  • Open Access

    ARTICLE

    Cooperative Game Theory-Based Optimal Scheduling Strategy for Microgrid Alliances

    Zhiyuan Zhang1, Meng Shuai2, Bin Wang1, Ying He3, Fan Yang1, Liyan Ren4,*, Yuyuan Zhang4, Ziren Wang4

    Energy Engineering, Vol.122, No.10, pp. 4169-4194, 2025, DOI:10.32604/ee.2025.066793 - 30 September 2025

    Abstract With the rapid development of renewable energy, the Microgrid Coalition (MGC) has become an important approach to improving energy utilization efficiency and economic performance. To address the operational optimization problem in multi-microgrid cooperation, a cooperative game strategy based on the Nash bargaining model is proposed, aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization. First, each microgrid is regarded as a game participant, and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed, targeting the minimization of total operational cost under constraints such as More >

Displaying 1-10 on page 1 of 246. Per Page