Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Efficient Scalable Template-Matching Technique for Ancient Brahmi Script Image

    Sandeep Kaur*, Bharat Bhushan Sagar

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1541-1559, 2023, DOI:10.32604/cmc.2023.032857 - 22 September 2022

    Abstract Analysis and recognition of ancient scripts is a challenging task as these scripts are inscribed on pillars, stones, or leaves. Optical recognition systems can help in preserving, sharing, and accelerate the study of the ancient scripts, but lack of standard dataset for such scripts is a major constraint. Although many scholars and researchers have captured and uploaded inscription images on various websites, manual searching, downloading and extraction of these images is tedious and error prone. Web search queries return a vast number of irrelevant results, and manually extracting images for a specific script is not More >

  • Open Access

    ARTICLE

    Enhancing Scalability of Image Retrieval Using Visual Fusion of Feature Descriptors

    S. Balammal@Geetha*, R. Muthukkumar, V. Seenivasagam

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1737-1752, 2022, DOI:10.32604/iasc.2022.018822 - 09 October 2021

    Abstract Content-Based Image Retrieval (CBIR) is an approach of retrieving similar images from a large image database. Recently CBIR poses new challenges in semantic categorization of the images. Different feature extraction technique have been proposed to overcome the semantic breach problems, however these methods suffer from several shortcomings. This paper contributes an image retrieval system to extract the local features based on the fusion of scale-invariant feature transform (SIFT) and KAZE. The strength of local feature descriptor SIFT complements global feature descriptor KAZE. SIFT concentrates on the complete region of an image using high fine points… More >

  • Open Access

    ARTICLE

    An Optimized Scale-Invariant Feature Transform Using Chamfer Distance in Image Matching

    Tamara A. Al-Shurbaji1, Khalid A. AlKaabneh2, Issam Alhadid3,*, Ra’ed Masa’deh4

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 971-985, 2022, DOI:10.32604/iasc.2022.019654 - 22 September 2021

    Abstract Scale-Invariant Feature Transform is an image matching algorithm used to match objects of two images by extracting the feature points of target objects in each image. Scale-Invariant Feature Transform suffers from long processing time due to embedded calculations which reduces the overall speed of the technique. This research aims to enhance SIFT processing time by imbedding Chamfer Distance Algorithm to find the distance between image descriptors instead of using Euclidian Distance Algorithm used in SIFT. Chamfer Distance Algorithm requires less computational time than Euclidian Distance Algorithm because it selects the shortest path between any two More >

Displaying 1-10 on page 1 of 3. Per Page