Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Land-Cover Classification and its Impact on Peshawar’s Land Surface Temperature Using Remote Sensing

    Shahab Ul Islam1, Saifullah Jan2, Abdul Waheed3,4,*, Gulzar Mehmood5, Mahdi Zareei6, Faisal Alanazi7

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4123-4145, 2022, DOI:10.32604/cmc.2022.019226 - 27 September 2021

    Abstract Spatial and temporal information on urban infrastructure is essential and requires various land-cover/land-use planning and management applications. Besides, a change in infrastructure has a direct impact on other land-cover and climatic conditions. This study assessed changes in the rate and spatial distribution of Peshawar district’s infrastructure and its effects on Land Surface Temperature (LST) during the years 1996 and 2019. For this purpose, firstly, satellite images of bands7 and 8 ETM+(Enhanced Thematic Mapper) plus and OLI (Operational Land Imager) of 30 m resolution were taken. Secondly, for classification and image processing, remote sensing (RS) applications… More >

  • Open Access

    ARTICLE

    Deep Feature Extraction and Feature Fusion for Bi-Temporal Satellite Image Classification

    Anju Asokan1, J. Anitha1, Bogdan Patrut2, Dana Danciulescu3, D. Jude Hemanth1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 373-388, 2021, DOI:10.32604/cmc.2020.012364 - 30 October 2020

    Abstract Multispectral images contain a large amount of spatial and spectral data which are effective in identifying change areas. Deep feature extraction is important for multispectral image classification and is evolving as an interesting research area in change detection. However, many deep learning framework based approaches do not consider both spatial and textural details into account. In order to handle this issue, a Convolutional Neural Network (CNN) based multi-feature extraction and fusion is introduced which considers both spatial and textural features. This method uses CNN to extract the spatio-spectral features from individual channels and fuse them More >

Displaying 1-10 on page 1 of 2. Per Page