Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    U-Net Inspired Deep Neural Network-Based Smoke Plume Detection in Satellite Images

    Ananthakrishnan Balasundaram1,2, Ayesha Shaik1,2,*, Japmann Kaur Banga2, Aman Kumar Singh2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 779-799, 2024, DOI:10.32604/cmc.2024.048362 - 25 April 2024

    Abstract Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have been identified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions is essential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcing emission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrial smoke plumes using freely accessible geo-satellite imagery. The existing system has so many lagging factors such as limitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timely response… More >

  • Open Access

    ARTICLE

    Survey on Segmentation and Classification Techniques of Satellite Images by Deep Learning Algorithm

    Atheer Joudah1,*, Souheyl Mallat2, Mounir Zrigui1

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4973-4984, 2023, DOI:10.32604/cmc.2023.036483 - 29 April 2023

    Abstract This survey paper aims to show methods to analyze and classify field satellite images using deep learning and machine learning algorithms. Users of deep learning-based Convolutional Neural Network (CNN) technology to harvest fields from satellite images or generate zones of interest were among the planned application scenarios (ROI). Using machine learning, the satellite image is placed on the input image, segmented, and then tagged. In contemporary categorization, field size ratio, Local Binary Pattern (LBP) histograms, and color data are taken into account. Field satellite image localization has several practical applications, including pest management, scene analysis, More >

  • Open Access

    ARTICLE

    Fusing Satellite Images Using ABC Optimizing Algorithm

    Nguyen Hai Minh1, Nguyen Tu Trung2,*, Tran Thi Ngan2, Tran Manh Tuan2

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3901-3909, 2023, DOI:10.32604/csse.2023.032311 - 03 April 2023

    Abstract Fusing satellite (remote sensing) images is an interesting topic in processing satellite images. The result image is achieved through fusing information from spectral and panchromatic images for sharpening. In this paper, a new algorithm based on based the Artificial bee colony (ABC) algorithm with peak signal-to-noise ratio (PSNR) index optimization is proposed to fusing remote sensing images in this paper. Firstly, Wavelet transform is used to split the input images into components over the high and low frequency domains. Then, two fusing rules are used for obtaining the fused images. The first rule is “the More >

  • Open Access

    ARTICLE

    Disaster Monitoring of Satellite Image Processing Using Progressive Image Classification

    Romany F. Mansour1,*, Eatedal Alabdulkreem2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1161-1169, 2023, DOI:10.32604/csse.2023.023307 - 15 June 2022

    Abstract The analysis of remote sensing image areas is needed for climate detection and management, especially for monitoring flood disasters in critical environments and applications. Satellites are mostly used to detect disasters on Earth, and they have advantages in capturing Earth images. Using the control technique, Earth images can be used to obtain detailed terrain information. Since the acquisition of satellite and aerial imagery, this system has been able to detect floods, and with increasing convenience, flood detection has become more desirable in the last few years. In this paper, a Big Data Set-based Progressive Image More >

  • Open Access

    ARTICLE

    Deep Neural Network Based Detection and Segmentation of Ships for Maritime Surveillance

    Kyamelia Roy1, Sheli Sinha Chaudhuri1, Sayan Pramanik2, Soumen Banerjee2,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 647-662, 2023, DOI:10.32604/csse.2023.024997 - 01 June 2022

    Abstract In recent years, computer vision finds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture. Automatic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies. Waterways being an important medium of transport require continuous monitoring for protection of national security. The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea. This paper proposes a deep learning… More >

  • Open Access

    ARTICLE

    Sentinel-2 Satellite Imagery Application to Monitor Soil Salinity and Calcium Carbonate Contents in Agricultural Fields

    Ahmed M. Zeyada1,*, Khalid A. Al-Gaadi1,2, ElKamil Tola2, Rangaswamy Madugundu2, Ahmed A. Alameen2

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1603-1620, 2023, DOI:10.32604/phyton.2023.027267 - 09 March 2023

    Abstract The estuary tides affect groundwater dynamics; these areas are susceptible to waterlogging and salinity issues. A study was conducted on two fields with a total area of 60 hectares under a center pivot irrigation system that works with solar energy and belong to a commercial farm located in Northern Sudan. To monitor soil salinity and calcium carbonate in the area and stop future degradation of soil resources, easy, non-intrusive, and practical procedures are required. The objective of this study was to use remote sensing-determined Sentinel-2 satellite imagery using various soil indices to develop prediction models… More >

  • Open Access

    ARTICLE

    Land-Cover Classification and its Impact on Peshawar’s Land Surface Temperature Using Remote Sensing

    Shahab Ul Islam1, Saifullah Jan2, Abdul Waheed3,4,*, Gulzar Mehmood5, Mahdi Zareei6, Faisal Alanazi7

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4123-4145, 2022, DOI:10.32604/cmc.2022.019226 - 27 September 2021

    Abstract Spatial and temporal information on urban infrastructure is essential and requires various land-cover/land-use planning and management applications. Besides, a change in infrastructure has a direct impact on other land-cover and climatic conditions. This study assessed changes in the rate and spatial distribution of Peshawar district’s infrastructure and its effects on Land Surface Temperature (LST) during the years 1996 and 2019. For this purpose, firstly, satellite images of bands7 and 8 ETM+(Enhanced Thematic Mapper) plus and OLI (Operational Land Imager) of 30 m resolution were taken. Secondly, for classification and image processing, remote sensing (RS) applications… More >

  • Open Access

    ARTICLE

    Deep Feature Extraction and Feature Fusion for Bi-Temporal Satellite Image Classification

    Anju Asokan1, J. Anitha1, Bogdan Patrut2, Dana Danciulescu3, D. Jude Hemanth1,*

    CMC-Computers, Materials & Continua, Vol.66, No.1, pp. 373-388, 2021, DOI:10.32604/cmc.2020.012364 - 30 October 2020

    Abstract Multispectral images contain a large amount of spatial and spectral data which are effective in identifying change areas. Deep feature extraction is important for multispectral image classification and is evolving as an interesting research area in change detection. However, many deep learning framework based approaches do not consider both spatial and textural details into account. In order to handle this issue, a Convolutional Neural Network (CNN) based multi-feature extraction and fusion is introduced which considers both spatial and textural features. This method uses CNN to extract the spatio-spectral features from individual channels and fuse them More >

  • Open Access

    ARTICLE

    Location Related Signals with Satellite Image Fusion Method Using Visual Image Integration Method

    G. Ravikanth1,∗, K. V. N. Sunitha2,†, B. Eswara Reddy3

    Computer Systems Science and Engineering, Vol.35, No.5, pp. 385-393, 2020

    Abstract Investigations were performed on a group utilizing (General Purpose Unit) GPU and executions were evaluated for the utilization of the created parallel usages to process satellite pictures from satellite Landsat7.The usage on a realistic group gives execution change from 2 to 18 times. The nature of the considered techniques was assessed by relative dimensionless global error in synthesis (ERGAS) and Quality Without Reference (QNR) measurements. The outcomes demonstrate execution picks ups and holding of value with the bunch of GPU contrasted with the outcomes and different analysts for a CPU and single GPU. The errand… More >

Displaying 1-10 on page 1 of 9. Per Page