Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Research on Sarcasm Detection Technology Based on Image-Text Fusion

    Xiaofang Jin1, Yuying Yang1,*, Yinan Wu1, Ying Xu2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5225-5242, 2024, DOI:10.32604/cmc.2024.050384 - 20 June 2024

    Abstract The emergence of new media in various fields has continuously strengthened the social aspect of social media. Netizens tend to express emotions in social interactions, and many people even use satire, metaphors, and other techniques to express some negative emotions, it is necessary to detect sarcasm in social comment data. For sarcasm, the more reference data modalities used, the better the experimental effect. This paper conducts research on sarcasm detection technology based on image-text fusion data. To effectively utilize the features of each modality, a feature reconstruction output algorithm is proposed. This algorithm is based… More >

  • Open Access

    ARTICLE

    Feature-Based Augmentation in Sarcasm Detection Using Reverse Generative Adversarial Network

    Derwin Suhartono1,*, Alif Tri Handoyo1, Franz Adeta Junior2

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3637-3657, 2023, DOI:10.32604/cmc.2023.045301 - 26 December 2023

    Abstract Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online communication. This study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network (GAN) based augmentation on diverse datasets, including iSarcasm, SemEval-18, and Ghosh. This research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network (RGAN). The proposed RGAN method works by inverting labels between original and synthetic data during the training process. This inversion of labels provides feedback… More >

  • Open Access

    ARTICLE

    Deep Learning with Natural Language Processing Enabled Sentimental Analysis on Sarcasm Classification

    Abdul Rahaman Wahab Sait1,*, Mohamad Khairi Ishak2

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2553-2567, 2023, DOI:10.32604/csse.2023.029603 - 01 August 2022

    Abstract Sentiment analysis (SA) is the procedure of recognizing the emotions related to the data that exist in social networking. The existence of sarcasm in textual data is a major challenge in the efficiency of the SA. Earlier works on sarcasm detection on text utilize lexical as well as pragmatic cues namely interjection, punctuations, and sentiment shift that are vital indicators of sarcasm. With the advent of deep-learning, recent works, leveraging neural networks in learning lexical and contextual features, removing the need for handcrafted feature. In this aspect, this study designs a deep learning with natural… More >

Displaying 1-10 on page 1 of 3. Per Page