Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    REVIEW

    Key Plant Transcription Factors in Crop Tolerance to Abiotic Stresses

    Nadia Lamsaadi1, Oumaima Maarouf2, Soukaina Lahmaoui2, Hamid Msaad2, Omar Farssi2, Chaima Hamim2, Mohamed Tamoudjout2, Hafsa Hirt2, Habiba Kamal2, Majida El Hassni2, Cherki Ghoulam3,4, Ahmed El Moukhtari5,*, Mohamed Farissi2

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3585-3610, 2025, DOI:10.32604/phyton.2025.072311 - 01 December 2025

    Abstract Abiotic stresses, such as drought, heavy metals, salinity, and extreme temperatures, are among the most common adverse threats that restrict the use of land for agriculture and limit crop growth and productivity. As sessile organisms, plants defend themselves from abiotic stresses by developing various tolerance mechanisms. These mechanisms are governed by several biochemical traits. The biochemical mechanisms are the products of key genes that express under specific conditions. Interestingly, the expression of these genes is regulated by specialized proteins known as transcription factors (TFs). Several TFs, including those from the bZIP, bHLH, MYB, HSF, WRKY,… More >

  • Open Access

    ARTICLE

    Effect of Salinity on Imbibition-Based Oil Production

    Xiong Liu1, Yueqi Cui1,*, Yirui Ren1, Lingxuan Peng2, Yuchan Cheng1, Zhiyuan Du1, Yu Chen1, Lishan Cao3

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2815-2828, 2025, DOI:10.32604/fdmp.2025.073775 - 01 December 2025

    Abstract This study explores the impact of salinity on fluid replacement during imbibition-driven oil recovery through a series of core self-imbibition experiments. By integrating key parameters such as interfacial tension, contact angle, and oil displacement efficiency, we systematically examine how variations in salinity level, ion type, and ion concentration affect the imbibition process. The results demonstrate that the salinity of the injected fluid exerts a strong influence on the rate and extent of oil recovery. Compared with high-salinity conditions, low-salinity injection, particularly below 5000 mg·L−1, induces pronounced fluctuations in the replacement rate, achieving the highest recovery at More >

  • Open Access

    ARTICLE

    Mathematical Modeling and Thermal Analysis of Salt Gradient Solar Pond

    Mahesh Kumar1, Rahool Rai2,*, Sudhakar Kumarasamy2,3,4,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1477-1493, 2025, DOI:10.32604/fhmt.2025.067933 - 31 October 2025

    Abstract The increasing demand due to development and advancement in every field of life has caused the depletion of fossil fuels. This depleting fossil fuel reserve throughout the world has enforced to get energy from alternative/renewable sources. One of the economical ways to get energy is through the utilization of solar ponds. In this study, a mathematical model of a salt gradient solar pond under the Islamabad climatic conditions has been analyzed for the first time. The model uses a one-dimensional finite difference explicit method for optimization of different zone thicknesses. The model depicts that NCZ More >

  • Open Access

    ARTICLE

    Tolerance of Sweet Sorghum (Sorghum bicolor) to Water Deficit and Irrigation Water Salinity: Water Relations and Production

    Rodrigo Rafael da Silva1,*, Gabriela Carvalho Maia de Queiroz1, Amanda Cibele da Paz Sousa1, Antônio Gustavo de Luna Souto1, Francisco Hélio Alves de Andrade 2, Francimar Maik da Silva Morais1, Rita Magally Oliveira da Silva Marcelino1, Fagner Nogueira Ferreira1, Alex Alvares da Silva3, Maria Isabela Batista Clemente1, Baltazar Cirino Junior1, Wedson Aleff Oliveira da Silva1, Mateus de Freitas Almeida dos Santos1, José Francismar de Medeiros1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.9, pp. 2797-2814, 2025, DOI:10.32604/phyton.2025.068089 - 30 September 2025

    Abstract Due to its tolerance to water deficit and salinity, sorghum is considered a suitable crop for cultivation in regions affected by these stress conditions, enabling the efficient use of limited water resources. This study evaluated the resilience of the sweet sorghum cultivar BRS 506 under water deficit and salinity stress, focusing on water relations and yield performance in semiarid conditions. A randomized complete block design was employed in a 3 × 3 factorial arrangement with four replicates. Treatments consisted of three levels of irrigation water salinity (1.50, 3.75, and 6.00 dS m−1) and three irrigation levels… More >

  • Open Access

    ARTICLE

    Seed Priming Mitigates the Salt Stress in Eggplant (Solanum melongena) by Activating Antioxidative Defense Mechanisms

    Muhammad Zaid Jawaid, Muhammad Fasih Khalid, Ahmed Abou Elezz, Talaat Ahmed*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2423-2439, 2025, DOI:10.32604/phyton.2025.068303 - 29 August 2025

    Abstract Salt stress is a major threat to crop agricultural productivity. Salinity affects plants’ physiological and biochemical functions by hampering metabolic functions and decreasing photosynthetic rates. Salinity causes hyperosmotic and hyperionic stress, directly impairing plant growth. In this study, eggplant seeds primed with moringa leaf extract (5%, 10%, and 15%), nano-titanium dioxide (0.02%, 0.04%, and 0.06%), and ascorbic acid (0.5, 1, and 2 mM) at different NaCl salt (0, 75, and 150 mM) concentration were grown. The germination attributes (final germination percentage, germination index, mean germination time, and mean germination rate) and growth (root length, shoot… More >

  • Open Access

    ARTICLE

    Evaluation of Seaweeds as Stimulators to Alleviate Salinity-Induced Stress on Some Agronomic Traits of Different Peanut (Arachis hypogaea L.) Cultivars

    Nilüfer Kocak Sahin*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2399-2421, 2025, DOI:10.32604/phyton.2025.067880 - 29 August 2025

    Abstract Peanut (Arachis hypogaea) is of international importance as a source of oil and protein. Soil salinity is one of the most significant abiotic stress factors affecting the yield and quality of peanuts. This study evaluated the potential of a seaweed-based biostimulant to enhance emergence and seedling growth of four peanut cultivars (‘Ayse Hanım’, ‘Halis Bey’, ‘NC-7’, and ‘Albenek’) under increasing salinity levels. The experiment was conducted under greenhouse conditions using a randomized complete block design with four replicates. Seeds were sown in trays and treated with two doses of seaweed extract (0 and 5 g L−1) applied… More >

  • Open Access

    ARTICLE

    Performance Analysis of Foamed Fracturing Fluids Based on Microbial Polysaccharides and Surfactants in High-Temperature and High-Salinity Reservoirs

    Zhiqiang Jiang1, Zili Li1, Bin Liang2, Miao He1, Weishou Hu3, Jun Tang3, Chao Song4, Nanxin Zheng5,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.6, pp. 1397-1416, 2025, DOI:10.32604/fdmp.2025.062737 - 30 June 2025

    Abstract Microbial polysaccharides, due to their unique physicochemical properties, have been shown to effectively enhance the stability of foam fracturing fluids. However, the combined application of microbial polysaccharides and surfactants under high-temperature and high-salinity conditions remain poorly understood. In this study, we innovatively investigate this problem with a particular focus on foam stabilization mechanisms. By employing the Waring blender method, the optimal surfactant-microbial polysaccharide blends are identified, and the foam stability, rheological properties, and decay behavior in different systems under varying conditions are systematically analyzed for the first time. The results reveal that microbial polysaccharides significantly More >

  • Open Access

    ARTICLE

    Ascorbic Acid Alleviates Salt Stress on the Physiology and Growth of Guava Seedlings

    Jackson Silva Nóbrega1,*, Geovani Soares de Lima1, Jean Telvio Andrade Ferreira2, Julio Cesar Agostinho da Silva1, Lauriane Almeida dos Anjos Soares1, Valéria Fernandes de Oliveira Sousa1, Paulo Vinicius de Oliveira Freire1, Reynaldo Teodoro de Fátima1, Flávia de Sousa Almeida1, Hans Raj Gheyi2, Josemir Moura Maia3

    Phyton-International Journal of Experimental Botany, Vol.94, No.5, pp. 1587-1600, 2025, DOI:10.32604/phyton.2025.063633 - 29 May 2025

    Abstract The Northeast region is the main producer of guava in Brazil, generating employment and income. However, water availability means that producer’s resort to using water with high salinity, which harms plant development, especially during the seedling formation phase. The adoption of techniques that mitigate the deleterious effect of salinity is increasingly necessary, such as the use of elicitors such as ascorbic acid. The purpose of this study was to analyze the morphophysiology of guava seedlings under saline and ascorbic acid levels. The study was carried out by applying treatments composed of five saline levels (SL… More >

  • Open Access

    ARTICLE

    Enhancing Salt Stress Tolerance in Portulaca oleracea L. Using Ascophyllum nodosum Biostimulant

    Zahra Alhawsa*, Rewaa Jalal, Nouf Asiri

    Phyton-International Journal of Experimental Botany, Vol.94, No.4, pp. 1319-1337, 2025, DOI:10.32604/phyton.2025.061918 - 30 April 2025

    Abstract Salinity stress is a major constraint on agricultural productivity, particularly in arid and semi-arid regions. This study evaluated the potential of Ascophyllum nodosum extract (ANE) in mitigating salinity-induced stress and enhancing the growth and physiological performance of Portulaca oleracea L. under NaCl concentrations of 0, 50, 70, and 100 mM for 50 days. A two-way ANOVA assessed the effects of NaCl concentration, ANE treatment, and their interaction. The results showed that ANE significantly increased plant height at 50 mM NaCl (p = 0.0011) but had no effect at higher salinity levels (p > 0.05). Shoot dry weight was… More >

  • Open Access

    ARTICLE

    Impact of Drought, Salinity, and Waterlogging on Wheat: Physiological, Biochemical Responses, and Yield Implications

    Mudasser Mehmood1,*, Zoahaib Aslam Khan1, Adil Mehmood2, Madiha Zaynab3, Muhammad Atiq ur Rahman4, Mohammad Khalid Al-Sadoon5, M. Harshini6, Ling Shing Wong7

    Phyton-International Journal of Experimental Botany, Vol.94, No.4, pp. 1111-1135, 2025, DOI:10.32604/phyton.2025.059812 - 30 April 2025

    Abstract Wheat (Triticum aestivum L.) is a staple crop critical for global food security, yet its productivity is significantly affected by abiotic stresses such as drought, salinity, and waterlogging, which are exacerbated by climate change. This study evaluated the effects of these stresses on vegetative growth, physiological responses, and yield. Field experiments were conducted using a Randomized Complete Block Design (RCBD) at the Mona Reclamation Experimental Project (MREP), WAPDA, Bhalwal, Sargodha, Punjab Pakistan. Stress treatments included three levels of drought (25%, 50%, and 75% field capacity), salinity (4, 8, and 12 dS/m), and waterlogging (24, 48, and… More >

Displaying 1-10 on page 1 of 58. Per Page