Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access

    ARTICLE

    Attribute Reduction on Decision Tables Based on Hausdorff Topology

    Nguyen Long Giang1, Tran Thanh Dai2, Le Hoang Son3, Tran Thi Ngan4, Nguyen Nhu Son1, Cu Nguyen Giap5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3097-3124, 2024, DOI:10.32604/cmc.2024.057383 - 18 November 2024

    Abstract Attribute reduction through the combined approach of Rough Sets (RS) and algebraic topology is an open research topic with significant potential for applications. Several research works have introduced a strong relationship between RS and topology spaces for the attribute reduction problem. However, the mentioned recent methods followed a strategy to construct a new measure for attribute selection. Meanwhile, the strategy for searching for the reduct is still to select each attribute and gradually add it to the reduct. Consequently, those methods tended to be inefficient for high-dimensional datasets. To overcome these challenges, we use the… More >

  • Open Access

    ARTICLE

    On Multi-Granulation Rough Sets with Its Applications

    Radwan Abu-Gdairi1, R. Mareay2,*, M. Badr3

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1025-1038, 2024, DOI:10.32604/cmc.2024.048647 - 25 April 2024

    Abstract Recently, much interest has been given to multi-granulation rough sets (MGRS), and various types of MGRS models have been developed from different viewpoints. In this paper, we introduce two techniques for the classification of MGRS. Firstly, we generate multi-topologies from multi-relations defined in the universe. Hence, a novel approximation space is established by leveraging the underlying topological structure. The characteristics of the newly proposed approximation space are discussed. We introduce an algorithm for the reduction of multi-relations. Secondly, a new approach for the classification of MGRS based on neighborhood concepts is introduced. Finally, a real-life More >

  • Open Access

    ARTICLE

    Mathematical Morphology View of Topological Rough Sets and Its Applications

    Ibrahim Noaman1, Abd El Fattah El Atik2, Tamer Medhat3,*, Manal E. Ali4

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6893-6908, 2023, DOI:10.32604/cmc.2023.033539 - 28 December 2022

    Abstract This article focuses on the relationship between mathematical morphology operations and rough sets, mainly based on the context of image retrieval and the basic image correspondence problem. Mathematical morphological procedures and set approximations in rough set theory have some clear parallels. Numerous initiatives have been made to connect rough sets with mathematical morphology. Numerous significant publications have been written in this field. Others attempt to show a direct connection between mathematical morphology and rough sets through relations, a pair of dual operations, and neighborhood systems. Rough sets are used to suggest a strategy to approximate… More >

  • Open Access

    ARTICLE

    Game Theory-Based Dynamic Weighted Ensemble for Retinal Disease Classification

    Kanupriya Mittal*, V. Mary Anita Rajam

    Intelligent Automation & Soft Computing, Vol.35, No.2, pp. 1907-1921, 2023, DOI:10.32604/iasc.2023.029037 - 19 July 2022

    Abstract An automated retinal disease detection system has long been in existence and it provides a safe, no-contact and cost-effective solution for detecting this disease. This paper presents a game theory-based dynamic weighted ensemble of a feature extraction-based machine learning model and a deep transfer learning model for automatic retinal disease detection. The feature extraction-based machine learning model uses Gaussian kernel-based fuzzy rough sets for reduction of features, and XGBoost classifier for the classification. The transfer learning model uses VGG16 or ResNet50 or Inception-ResNet-v2. A novel ensemble classifier based on the game theory approach is proposed More >

  • Open Access

    ARTICLE

    Rough Sets Hybridization with Mayfly Optimization for Dimensionality Reduction

    Ahmad Taher Azar1,2,*, Mustafa Samy Elgendy1, Mustafa Abdul Salam1,3, Khaled M. Fouad1,4

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1087-1108, 2022, DOI:10.32604/cmc.2022.028184 - 18 May 2022

    Abstract Big data is a vast amount of structured and unstructured data that must be dealt with on a regular basis. Dimensionality reduction is the process of converting a huge set of data into data with tiny dimensions so that equal information may be expressed easily. These tactics are frequently utilized to improve classification or regression challenges while dealing with machine learning issues. To achieve dimensionality reduction for huge data sets, this paper offers a hybrid particle swarm optimization-rough set PSO-RS and Mayfly algorithm-rough set MA-RS. A novel hybrid strategy based on the Mayfly algorithm (MA) More >

  • Open Access

    ARTICLE

    Power Quality Assessment Based on Rough AHP and Extension Analysis

    Guofeng Liu*, Can Zhang, Zhengyi Zhu, Xuyan Wang

    Energy Engineering, Vol.119, No.3, pp. 929-946, 2022, DOI:10.32604/ee.2022.014816 - 31 March 2022

    Abstract Due to the increasing power consumption of whole society and widely using of new non-linear and asymmetric electrical equipment, power quality assessment problem in the new period has attracted more and more attention. The mathematical essence of comprehensive assessment of power quality is a multi-attribute optimal decision-making problem. In order to solve the key problem of determining the indicator weight in the process of power quality assessment, a rough analytic hierarchy process (AHP) is proposed to aggregate the judgment opinions of multiple experts and eliminate the subjective effects of single expert judgment. Based on the… More >

  • Open Access

    ARTICLE

    Color Image Segmentation Using Soft Rough Fuzzy-C-Means and Local Binary Pattern

    R.V.V. Krishna1,*, S. Srinivas Kumar2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 281-290, 2020, DOI:10.31209/2019.100000121

    Abstract In this paper, a color image segmentation algorithm is proposed by extracting both texture and color features and applying them to the one -against-all multi class support vector machine (MSVM) classifier for segmentation. Local Binary Pattern is used for extracting the textural features and L*a*b color model is used for obtaining the color features. The MSVM is trained using the samples obtained from a novel soft rough fuzzy c-means (SRFCM) clustering. The fuzzy set based membership functions capably handle the problem of overlapping clusters. The lower and upper approximation concepts of rough sets deal well More >

  • Open Access

    ARTICLE

    Non-Deterministic Outlier Detection Method Based on the Variable Precision Rough Set Model

    Alberto Fernández Oliva1, Francisco Maciá Pérez2, José Vicente Berná-Martinez2,*, Miguel Abreu Ortega3

    Computer Systems Science and Engineering, Vol.34, No.3, pp. 131-144, 2019, DOI:10.32604/csse.2019.34.131

    Abstract This study presents a method for the detection of outliers based on the Variable Precision Rough Set Model (VPRSM). The basis of this model is the generalisation of the standard concept of a set inclusion relation on which the Rough Set Basic Model (RSBM) is based. The primary contribution of this study is the improvement in detection quality, which is achieved due to the generalisation allowed by the classification system that allows a certain degree of uncertainty. From this method, a computationally efficient algorithm is proposed. The experiments performed with a real scenario and a More >

  • Open Access

    ARTICLE

    A Novel Fuzzy Rough Sets Theory Based CF Recommendation System

    C. Raja Kumar1, VE. Jayanthi2

    Computer Systems Science and Engineering, Vol.34, No.3, pp. 123-129, 2019, DOI:10.32604/csse.2019.34.123

    Abstract Collaborative Filtering (CF) is one of the popular methodology in recommender systems. It suffers from the data sparsity problem, recommendation inaccuracy and big-error in predictions. In this paper, the efficient advisory tool is implemented for the younger generation to choose their right career based on their knowledge. It acquires the notions of indiscernible relation from Fuzzy Rough Sets Theory (FRST) and propose a novel algorithm named as Fuzzy Rough Set Theory Based Collaborative Filtering Algorithm (FRSTBCF). To evaluate the model, data is prepared using the cross validation method. Based on that, ratings are evaluated by… More >

  • Open Access

    ARTICLE

    Research on Protecting Information Security Based on the Method of Hierarchical Classification in the Era of Big Data

    Guangyong Yang1,*, Mengke Yang2,*, Shafaq Salam3, Jianqiu Zeng4

    Journal of Cyber Security, Vol.1, No.1, pp. 19-28, 2019, DOI:10.32604/jcs.2019.05947

    Abstract Big data is becoming increasingly important because of the enormous information generation and storage in recent years. It has become a challenge to the data mining technique and management. Based on the characteristics of geometric explosion of information in the era of big data, this paper studies the possible approaches to balance the maximum value and privacy of information, and disposes the Nine-Cells information matrix, hierarchical classification. Furthermore, the paper uses the rough sets theory to proceed from the two dimensions of value and privacy, establishes information classification method, puts forward the countermeasures for information More >

Displaying 1-10 on page 1 of 11. Per Page