Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Multi-Scale Fusion Network Using Time-Division Fourier Transform for Rolling Bearing Fault Diagnosis

    Ronghua Wang1, Shibao Sun1,*, Pengcheng Zhao1,*, Xianglan Yang2, Xingjia Wei1, Changyang Hu1

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 3519-3539, 2025, DOI:10.32604/cmc.2025.066212 - 03 July 2025

    Abstract The capacity to diagnose faults in rolling bearings is of significant practical importance to ensure the normal operation of the equipment. Frequency-domain features can effectively enhance the identification of fault modes. However, existing methods often suffer from insufficient frequency-domain representation in practical applications, which greatly affects diagnostic performance. Therefore, this paper proposes a rolling bearing fault diagnosis method based on a Multi-Scale Fusion Network (MSFN) using the Time-Division Fourier Transform (TDFT). The method constructs multi-scale channels to extract time-domain and frequency-domain features of the signal in parallel. A multi-level, multi-scale filter-based approach is designed to More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Detection Based on Self-Adaptive Wasserstein Dual Generative Adversarial Networks and Feature Fusion under Small Sample Conditions

    Qiang Ma1,2,3,4,5, Zhuopei Wei1,2, Kai Yang1,2,*, Long Tian1,2, Zepeng Li1,2

    Structural Durability & Health Monitoring, Vol.19, No.4, pp. 1011-1035, 2025, DOI:10.32604/sdhm.2025.060596 - 30 June 2025

    Abstract An intelligent diagnosis method based on self-adaptive Wasserstein dual generative adversarial networks and feature fusion is proposed due to problems such as insufficient sample size and incomplete fault feature extraction, which are commonly faced by rolling bearings and lead to low diagnostic accuracy. Initially, dual models of the Wasserstein deep convolutional generative adversarial network incorporating gradient penalty (1D-2DWDCGAN) are constructed to augment the original dataset. A self-adaptive loss threshold control training strategy is introduced, and establishing a self-adaptive balancing mechanism for stable model training. Subsequently, a diagnostic model based on multidimensional feature fusion is designed,… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on 1D Convolutional Neural Network and Kolmogorov–Arnold Network for Industrial Internet

    Huyong Yan1, Huidong Zhou2,*, Jian Zheng1, Zhaozhe Zhou1

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4659-4677, 2025, DOI:10.32604/cmc.2025.062807 - 19 May 2025

    Abstract As smart manufacturing and Industry 4.0 continue to evolve, fault diagnosis of mechanical equipment has become crucial for ensuring production safety and optimizing equipment utilization. To address the challenge of cross-domain adaptation in intelligent diagnostic models under varying operational conditions, this paper introduces the CNN-1D-KAN model, which combines a 1D Convolutional Neural Network (1D-CNN) with a Kolmogorov–Arnold Network (KAN). The novelty of this approach lies in replacing the traditional 1D-CNN’s final fully connected layer with a KANLinear layer, leveraging KAN’s advanced nonlinear processing and function approximation capabilities while maintaining the simplicity of linear transformations. Experimental… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on Cross-Attention Fusion WDCNN and BILSTM

    Yingyong Zou*, Xingkui Zhang, Tao Liu, Yu Zhang, Long Li, Wenzhuo Zhao

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4699-4723, 2025, DOI:10.32604/cmc.2025.062625 - 19 May 2025

    Abstract High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation. To solve the problems of low accuracy of the diagnostic model and unstable model due to the influence of noise during fault detection, a rolling bearing fault diagnosis model based on cross-attention fusion of WDCNN and BILSTM is proposed. The first layer of the wide convolutional kernel deep convolutional neural network (WDCNN) is used to extract the local features of the signal and suppress the high-frequency noise. A Bidirectional Long Short-Term Memory Network (BILSTM) is… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Method Based on FFT-VMD Multiscale Information Fusion and SE-TCN Model

    Chaozhi Cai, Yuqi Ren, Yingfang Xue*, Jianhua Ren

    Structural Durability & Health Monitoring, Vol.19, No.3, pp. 665-682, 2025, DOI:10.32604/sdhm.2025.059044 - 03 April 2025

    Abstract Rolling bearings are important parts of industrial equipment, and their fault diagnosis is crucial to maintaining these equipment’s regular operations. With the goal of improving the fault diagnosis accuracy of rolling bearings under complex working conditions and noise, this study proposes a multiscale information fusion method for fault diagnosis of rolling bearings based on fast Fourier transform (FFT) and variational mode decomposition (VMD), as well as the Senet (SE)-TCNnet (TCN) model. FFT is used to transform the original one-dimensional time domain vibration signal into a frequency domain signal, while VMD is used to decompose the… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on MTF Encoding and CBAM-LCNN Mechanism

    Wei Liu1, Sen Liu2,3,*, Yinchao He2, Jiaojiao Wang1, Yu Gu1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4863-4880, 2025, DOI:10.32604/cmc.2025.059295 - 06 March 2025

    Abstract To address the issues of slow diagnostic speed, low accuracy, and poor generalization performance in traditional rolling bearing fault diagnosis methods, we propose a rolling bearing fault diagnosis method based on Markov Transition Field (MTF) image encoding combined with a lightweight convolutional neural network that integrates a Convolutional Block Attention Module (CBAM-LCNN). Specifically, we first use the Markov Transition Field to convert the original one-dimensional vibration signals of rolling bearings into two-dimensional images. Then, we construct a lightweight convolutional neural network incorporating the convolutional attention module (CBAM-LCNN). Finally, the two-dimensional images obtained from MTF mapping… More >

  • Open Access

    ARTICLE

    Data-Driven Method for Predicting Remaining Useful Life of Bearings Based on Multi-Layer Perception Neural Network and Bidirectional Long Short-Term Memory Network

    Yongfeng Tai1, Xingyu Yan2, Xiangyi Geng3, Lin Mu4, Mingshun Jiang2, Faye Zhang2,*

    Structural Durability & Health Monitoring, Vol.19, No.2, pp. 365-383, 2025, DOI:10.32604/sdhm.2024.053998 - 15 January 2025

    Abstract The remaining useful life prediction of rolling bearing is vital in safety and reliability guarantee. In engineering scenarios, only a small amount of bearing performance degradation data can be obtained through accelerated life testing. In the absence of lifetime data, the hidden long-term correlation between performance degradation data is challenging to mine effectively, which is the main factor that restricts the prediction precision and engineering application of the residual life prediction method. To address this problem, a novel method based on the multi-layer perception neural network and bidirectional long short-term memory network is proposed. Firstly,… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM

    Chunming Wu1, Shupeng Zheng2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4395-4411, 2024, DOI:10.32604/cmc.2024.049665 - 20 June 2024

    Abstract Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature information of various sizes, the model creates a multi-scale feature extraction module using the convolutional neural network (CNN) learning process.… More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

    Guangfei Jia*, Yanchao Meng, Zhiying Qin

    Structural Durability & Health Monitoring, Vol.18, No.4, pp. 445-463, 2024, DOI:10.32604/sdhm.2024.049298 - 05 June 2024

    Abstract The vibration signals of rolling bearings exhibit nonlinear and non-stationary characteristics under the influence of noise. In intelligent fault diagnosis, unprocessed signals will lead to weak fault characteristics and low diagnostic accuracy. To solve the above problem, a fault diagnosis method based on parameter optimization feature mode decomposition and improved deep belief networks is proposed. The feature mode decomposition is used to decompose the vibration signals. The parameter adaptation of feature mode decomposition is implemented by improved whale optimization algorithm including Levy flight strategy and adaptive weight. The selection of activation function and parameters is More > Graphic Abstract

    Bearing Fault Diagnosis Based on Optimized Feature Mode Decomposition and Improved Deep Belief Network

  • Open Access

    ARTICLE

    Intelligent Fault Diagnosis Method of Rolling Bearings Based on Transfer Residual Swin Transformer with Shifted Windows

    Haomiao Wang1, Jinxi Wang2, Qingmei Sui2,*, Faye Zhang2, Yibin Li1, Mingshun Jiang2, Phanasindh Paitekul3

    Structural Durability & Health Monitoring, Vol.18, No.2, pp. 91-110, 2024, DOI:10.32604/sdhm.2023.041522 - 22 March 2024

    Abstract Due to their robust learning and expression ability for complex features, the deep learning (DL) model plays a vital role in bearing fault diagnosis. However, since there are fewer labeled samples in fault diagnosis, the depth of DL models in fault diagnosis is generally shallower than that of DL models in other fields, which limits the diagnostic performance. To solve this problem, a novel transfer residual Swin Transformer (RST) is proposed for rolling bearings in this paper. RST has 24 residual self-attention layers, which use the hierarchical design and the shifted window-based residual self-attention. Combined More >

Displaying 1-10 on page 1 of 17. Per Page