Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Characteristics of Rock Mechanics Response and Energy Evolution Regime of Deep Reservoirs in the Bozhong Sag, Bohai Bay Basin

    Suogui Shang1, Kechao Gao1, Qingbin Wang1, Xinghua Zhang1, Pengli Zhou2,3,*, Jianhua Li2,3, Peng Chu2,3

    Energy Engineering, Vol.121, No.9, pp. 2505-2524, 2024, DOI:10.32604/ee.2024.050094 - 19 August 2024

    Abstract Hydraulic fracturing is a mature and effective method for deep oil and gas production, which provides a foundation for deep oil and gas production. One of the key aspects of implementing hydraulic fracturing technology lies in understanding mechanics response characteristics of rocks in deep reservoirs under complex stress conditions. In this work, based on outcrop core samples, high-stress triaxial compression tests were designed to simulate the rock mechanics behavior of deep reservoirs in Bozhong Sag. Additionally, this study analyzes the deformation and damage law for rock under different stress conditions. Wherein, with a particular focus… More >

  • Open Access

    PROCEEDINGS

    Data-Driven Enhanced Combined Finite-Discrete Element Method for Simulating Rock Failure Progress

    Ruifeng Zhao1, Zhijun Wu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-2, 2023, DOI:10.32604/icces.2023.09814

    Abstract The combined finite-discrete element method (FDEM) can effectively simulate the continuousdiscontinuous failure process of rocks, and is now widely adopted to investigate the issues related to rock mechanics and engineering. The conventional FDEM requires pre-defines constitutive models to calculate the element stress from element deformations [1]. However, the constitutive model used in conventional FDEM is obtained by empirical fitting of rock mechanics test data, and large amount of rock physical and mechanical information present in the test data, such as the nonlinear properties of rock presented in the initial compaction stage, are lost in the… More >

  • Open Access

    ABSTRACT

    Block Theory and Its Application to a Water-Conveyance Tunnel Project

    Zixin Zhang1,2,*, Shuaifeng Wang1,2, Xin Huang1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.2, pp. 29-29, 2019, DOI:10.32604/icces.2019.04704

    Abstract Block theory is widely used in numerical simulation of rock engineering due to its concision and fast-calculation. The paper proposes block theory for TBM (tunnel boring machine) tunnels to extend the traditional block theory applicative for tunnels excavated by TBM. In the proposed method, TBM-block interaction forces are taken into consideration. Subsequently, an index is proposed to estimate the stability of the TBM tunnel based on safety factor at every given chainage of the tunnel. Finally, a real water-conveyance tunnel project is studied with block theory for TBM tunnels. The simulation results include the joint More >

Displaying 1-10 on page 1 of 3. Per Page