Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (199)
  • Open Access

    ARTICLE

    A Novel Filtering-Based Detection Method for Small Targets in Infrared Images

    Sanxia Shi, Yinglei Song*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2911-2934, 2024, DOI:10.32604/cmc.2024.055363 - 18 November 2024

    Abstract Infrared small target detection technology plays a pivotal role in critical military applications, including early warning systems and precision guidance for missiles and other defense mechanisms. Nevertheless, existing traditional methods face several significant challenges, including low background suppression ability, low detection rates, and high false alarm rates when identifying infrared small targets in complex environments. This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach. The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.… More >

  • Open Access

    ARTICLE

    LDNet: A Robust Hybrid Approach for Lie Detection Using Deep Learning Techniques

    Shanjita Akter Prome1, Md Rafiqul Islam2,*, Md. Kowsar Hossain Sakib1, David Asirvatham1, Neethiahnanthan Ari Ragavan3, Cesar Sanin2, Edward Szczerbicki4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2845-2871, 2024, DOI:10.32604/cmc.2024.055311 - 18 November 2024

    Abstract Deception detection is regarded as a concern for everyone in their daily lives and affects social interactions. The human face is a rich source of data that offers trustworthy markers of deception. The deception or lie detection systems are non-intrusive, cost-effective, and mobile by identifying facial expressions. Over the last decade, numerous studies have been conducted on deception detection using several advanced techniques. Researchers have focused their attention on inventing more effective and efficient solutions for the detection of deception. So, it could be challenging to spot trends, practical approaches, gaps, and chances for contribution.… More >

  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    PROCEEDINGS

    Strengthening Mechanical Performance with Robust and Efficient Machine Learning-Assisted Path Planning for Additive Manufacturing of Continuous Fiber Composites

    Xinmeng Zha1, Huilin Ren1,*, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011371

    Abstract Additive manufacturing of continuous fiber composites is an emerging field that enables the tunable mechanical performance of composite structure by flexibly controlling the spatial layout of continuous fibers. Transverse isotropic strengthening is advantageous property of continuous fiber, which is favorable to align with the principal stress orientation. However, the accuracy and efficiency of traditional methods for calculating principal stress field are unguaranteed due to the inherent complexity and variability of geometries, material properties, and operational conditions in additive manufacturing. Therefore, a machine learning-assisted path planning method is proposed to robustly and efficiently generate the continuous… More >

  • Open Access

    PROCEEDINGS

    Improved XFEM (IXFEM): Accurate, Efficient, Robust and Reliable Analysis for Arbitrary Multiple Crack Problems

    Lixiang Wang1, Longfei Wen2,3, Rong Tian2,3,*, Chun Feng1,4,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011137

    Abstract The extended finite element method (XFEM) has been successful in crack analysis but faces challenges in modeling multiple cracks. One challenge is the linear dependence and ill-conditioning of the global stiffness matrix, while another is the geometric description for multiple cracks. To address the first challenge, the Improved XFEM (IXFEM) [1–9] is extended to handle multiple crack problems, effectively eliminating issues of linear dependence and ill-conditioning. Additionally, to overcome the second challenge, a novel level set templated cover cutting method (LSTCCM) [10] is proposed, which combines the advantages of the level set method and cover More >

  • Open Access

    ARTICLE

    Distributed Robust Scheduling Optimization of Wind-Thermal-Storage System Based on Hybrid Carbon Trading and Wasserstein Fuzzy Set

    Gang Wang*, Yuedong Wu, Xiaoyi Qian, Yi Zhao

    Energy Engineering, Vol.121, No.11, pp. 3417-3435, 2024, DOI:10.32604/ee.2024.052268 - 21 October 2024

    Abstract A robust scheduling optimization method for wind–fire storage system distribution based on the mixed carbon trading mechanism is proposed to improve the rationality of carbon emission quota allocation while reducing the instability of large-scale wind power access systems. A hybrid carbon trading mechanism that combines short-term and long-term carbon trading is constructed, and a fuzzy set based on Wasserstein measurement is proposed to address the uncertainty of wind power access. Moreover, a robust scheduling optimization method for wind–fire storage systems is formed. Results of the multi scenario comparative analysis of practical cases show that the More >

  • Open Access

    ARTICLE

    Constructive Robust Steganography Algorithm Based on Style Transfer

    Xiong Zhang1,2, Minqing Zhang1,2,3,*, Xu’an Wang1,2,3,*, Siyuan Huang1,2, Fuqiang Di1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1433-1448, 2024, DOI:10.32604/cmc.2024.056742 - 15 October 2024

    Abstract Traditional information hiding techniques achieve information hiding by modifying carrier data, which can easily leave detectable traces that may be detected by steganalysis tools. Especially in image transmission, both geometric and non-geometric attacks can cause subtle changes in the pixels of the image during transmission. To overcome these challenges, we propose a constructive robust image steganography technique based on style transformation. Unlike traditional steganography, our algorithm does not involve any direct modifications to the carrier data. In this study, we constructed a mapping dictionary by setting the correspondence between binary codes and image categories and… More >

  • Open Access

    ARTICLE

    Adversarial Defense Technology for Small Infrared Targets

    Tongan Yu1, Yali Xue1,*, Yiming He1, Shan Cui2, Jun Hong2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1235-1250, 2024, DOI:10.32604/cmc.2024.056075 - 15 October 2024

    Abstract With the rapid development of deep learning-based detection algorithms, deep learning is widely used in the field of infrared small target detection. However, well-designed adversarial samples can fool human visual perception, directly causing a serious decline in the detection quality of the recognition model. In this paper, an adversarial defense technology for small infrared targets is proposed to improve model robustness. The adversarial samples with strong migration can not only improve the generalization of defense technology, but also save the training cost. Therefore, this study adopts the concept of maximizing multidimensional feature distortion, applying noise… More >

  • Open Access

    REVIEW

    Robust Deep Image Watermarking: A Survey

    Yuanjing Luo, Xichen Tan, Zhiping Cai*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 133-160, 2024, DOI:10.32604/cmc.2024.055150 - 15 October 2024

    Abstract In the era of internet proliferation, safeguarding digital media copyright and integrity, especially for images, is imperative. Digital watermarking stands out as a pivotal solution for image security. With the advent of deep learning, watermarking has seen significant advancements. Our review focuses on the innovative deep watermarking approaches that employ neural networks to identify robust embedding spaces, resilient to various attacks. These methods, characterized by a streamlined encoder-decoder architecture, have shown enhanced performance through the incorporation of novel training modules. This article offers an in-depth analysis of deep watermarking’s core technologies, current status, and prospective More >

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

Displaying 1-10 on page 1 of 199. Per Page