Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (265)
  • Open Access

    ARTICLE

    A Robust Vision-Based Framework for Traffic Sign and Light Detection in Automated Driving Systems

    Mohammed Al-Mahbashi1,2,*, Ali Ahmed3, Abdolraheem Khader4,*, Shakeel Ahmad3, Mohamed A. Damos5, Ahmed Abdu6

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075909 - 29 January 2026

    Abstract Reliable detection of traffic signs and lights (TSLs) at long range and under varying illumination is essential for improving the perception and safety of autonomous driving systems (ADS). Traditional object detection models often exhibit significant performance degradation in real-world environments characterized by high dynamic range and complex lighting conditions. To overcome these limitations, this research presents FED-YOLOv10s, an improved and lightweight object detection framework based on You Only look Once v10 (YOLOv10). The proposed model integrates a C2f-Faster block derived from FasterNet to reduce parameters and floating-point operations, an Efficient Multiscale Attention (EMA) mechanism to More >

  • Open Access

    ARTICLE

    Cognitive NFIDC-FRBFNN Control Architecture for Robust Path Tracking of Mobile Service Robots in Hospital Settings

    Huda Talib Najm1,2, Ahmed Sabah Al-Araji3, Nur Syazreen Ahmad1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071837 - 29 January 2026

    Abstract Mobile service robots (MSRs) in hospital environments require precise and robust trajectory tracking to ensure reliable operation under dynamic conditions, including model uncertainties and external disturbances. This study presents a cognitive control strategy that integrates a Numerical Feedforward Inverse Dynamic Controller (NFIDC) with a Feedback Radial Basis Function Neural Network (FRBFNN). The robot’s mechanical structure was designed in SolidWorks 2022 SP2.0 and validated under operational loads using finite element analysis in ANSYS 2022 R1. The NFIDC-FRBFNN framework merges proactive inverse dynamic compensation with adaptive neural learning to achieve smooth torque responses and accurate motion control.… More >

  • Open Access

    ARTICLE

    Low-Carbon Economic Dispatch of an Integrated Energy System with Multi-Device Coupling under Ladder-Type Carbon Trading

    Chenxuan Zhang, Yongqing Qi*, Ximin Cao, Yanchi Zhang

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.069878 - 27 January 2026

    Abstract To enhance the low-carbon economic efficiency and increase the utilization of renewable energy within integrated energy systems (IES), this paper proposes a low-carbon dispatch model integrating power-to-gas (P2G), carbon capture and storage (CCS), hydrogen fuel cell (HFC), and combined heat and power (CHP). The P2G process is refined into a two-stage structure, and HFC is introduced to enhance hydrogen utilization. Together with CCS and CHP, these devices form a multi-energy conversion system coupling electricity, heat, cooling, and gas. A ladder-type carbon trading approach is adopted to flexibly manage carbon output by leveraging marginal cost adjustments.… More >

  • Open Access

    ARTICLE

    EARAS: An Efficient, Anonymous, and Robust Authentication Scheme for Smart Homes

    Muntaham Inaam Hashmi1, Muhammad Ayaz Khan2, Khwaja Mansoor ul Hassan1, Suliman A. Alsuhibany3,*, Ainur Abduvalova4, Asfandyar Khan5

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071452 - 12 January 2026

    Abstract Cyber-criminals target smart connected devices for spyware distribution and security breaches, but existing Internet of Things (IoT) security standards are insufficient. Major IoT industry players prioritize market share over security, leading to insecure smart products. Traditional host-based protection solutions are less effective due to limited resources. Overcoming these challenges and enhancing the security of IoT Devices requires a security design at the network level that uses lightweight cryptographic parameters. In order to handle control, administration, and security concerns in traditional networking, the Gateway Node offers a contemporary networking architecture. By managing all network-level computations and… More >

  • Open Access

    ARTICLE

    MDGET-MER: Multi-Level Dynamic Gating and Emotion Transfer for Multi-Modal Emotion Recognition

    Musheng Chen1,2, Qiang Wen1, Xiaohong Qiu1,2, Junhua Wu1,*, Wenqing Fu1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071207 - 12 January 2026

    Abstract In multi-modal emotion recognition, excessive reliance on historical context often impedes the detection of emotional shifts, while modality heterogeneity and unimodal noise limit recognition performance. Existing methods struggle to dynamically adjust cross-modal complementary strength to optimize fusion quality and lack effective mechanisms to model the dynamic evolution of emotions. To address these issues, we propose a multi-level dynamic gating and emotion transfer framework for multi-modal emotion recognition. A dynamic gating mechanism is applied across unimodal encoding, cross-modal alignment, and emotion transfer modeling, substantially improving noise robustness and feature alignment. First, we construct a unimodal encoder More >

  • Open Access

    ARTICLE

    Robust Sensor—Less PR Controller Design for 15-PUC Multilevel Inverter Topology with Low Voltage Stress for Renewable Energy Applications

    K. Naga Venkata Siva1, Damodhar Reddy2, P. Krishna Murthy3, Kiran Kumar Pulamolu4, M. Dharani5, T. Venkatakrishnamoorthy6,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072982 - 27 December 2025

    Abstract Conventional multilevel inverters often suffer from high harmonic distortion and increased design complexity due to the need for numerous power semiconductor components, particularly at elevated voltage levels. Addressing these shortcomings, this work presents a robust 15-level Packed U Cell (PUC) inverter topology designed for renewable energy and grid-connected applications. The proposed system integrates a sensor less proportional-resonant (PR) controller with an advanced carrier-based pulse width modulation scheme. This approach efficiently balances capacitor voltage, minimizes steady-state error, and strongly suppresses both zero and third-order harmonics resulting in reduced total harmonic distortion and enhanced voltage regulation. Additionally, More >

  • Open Access

    ARTICLE

    Zero-Shot Vision-Based Robust 3D Map Reconstruction and Obstacle Detection in Geometry-Deficient Room-Scale Environments

    Taehoon Kim, Sehun Lee, Junho Ahn*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-30, 2026, DOI:10.32604/cmc.2025.071597 - 09 December 2025

    Abstract As large, room-scale environments become increasingly common, their spatial complexity increases due to variable, unstructured elements. Consequently, demand for room-scale service robots is surging, yet most technologies remain corridor-centric, and autonomous navigation in expansive rooms becomes unstable even around static obstacles. Existing approaches face several structural limitations. These include the labor-intensive requirement for large-scale object annotation and continual retraining, as well as the vulnerability of vanishing point or line-based methods when geometric cues are insufficient. In addition, the high cost of LiDAR and 3D perception errors caused by limited wall cues and dense interior clutter… More >

  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    MultiAgent-CoT: A Multi-Agent Chain-of-Thought Reasoning Model for Robust Multimodal Dialogue Understanding

    Ans D. Alghamdi*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-35, 2026, DOI:10.32604/cmc.2025.071210 - 09 December 2025

    Abstract Multimodal dialogue systems often fail to maintain coherent reasoning over extended conversations and suffer from hallucination due to limited context modeling capabilities. Current approaches struggle with cross-modal alignment, temporal consistency, and robust handling of noisy or incomplete inputs across multiple modalities. We propose MultiAgent-Chain of Thought (CoT), a novel multi-agent chain-of-thought reasoning framework where specialized agents for text, vision, and speech modalities collaboratively construct shared reasoning traces through inter-agent message passing and consensus voting mechanisms. Our architecture incorporates self-reflection modules, conflict resolution protocols, and dynamic rationale alignment to enhance consistency, factual accuracy, and user engagement. More >

  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025

    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

Displaying 1-10 on page 1 of 265. Per Page